All-trans retinoic acid (ATRA), an active form of vitamin A, exerts immunomodulatory functions. In this study, we examined the immune potentiating effect of ATRA on bacterial flagellin-induced NF-B activation and proinflammatory cytokine production in human monocytic cell line THP-1. ATRA treatment significantly enhanced the flagellin-induced NF-B/AP-1 activity in THP-1 via the RAR/RXR pathway. Similarly, ATRA enhanced the expression and production of TNF- and IL-1 in THP-1 cells upon flagellin challenge. The cell surface expression of toll-like receptor 5 (TLR5), which is the receptor for bacterial flagellin, was significantly reduced by ATRA in a concentration- and time-dependent manner. To determine the mechanisms underlying the ATRA-enhanced immune response against bacterial flagellin despite the reduced cell surface expression of TLR5 in ATRA-treated THP-1, we examined the cell surface expression of CD14, which has been proposed to be a TLR co-receptor that enhances the response to microbial components. The cell surface expression of CD14 was significantly enhanced by ATRA treatment, especially in the presence of flagellin. Anti-CD14 antibody treatment prior to ATRA and flagellin treatments completely abolished ATRA-enhanced TNF- and IL-1 production. Our results suggest that ATRA enhances flagellin-stimulated proinflammatory responses in human monocyte THP-1 cells by upregulating CD14 in a RAR/RXR-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948301PMC
http://dx.doi.org/10.1155/2019/8059312DOI Listing

Publication Analysis

Top Keywords

cell surface
16
surface expression
16
thp-1 cells
12
all-trans retinoic
8
retinoic acid
8
flagellin-stimulated proinflammatory
8
proinflammatory responses
8
responses human
8
human monocyte
8
monocyte thp-1
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!