The two-dimensional (2D) Ruddlesden-Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting ('Rashba splitting') occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965620PMC
http://dx.doi.org/10.1038/s41467-019-14073-6DOI Listing

Publication Analysis

Top Keywords

circular photogalvanic
8
rashba splitting
8
multiple quantum
8
quantum wells
8
electronic band
8
inversion symmetry
8
spin splitting
8
photogalvanic spectroscopy
4
spectroscopy rashba
4
splitting
4

Similar Publications

We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.

View Article and Find Full Text PDF

We have computationally demonstrated a new method for generating pure spin current with the photogalvanic effect (PGE) by constructing transport junctions using h-BN/graphene/h-BN van der Waals (vdW) heterostructure leads. It has been observed that the pure spin current without any accompanying charge current induced by the PGE can consistently be obtained, regardless of photon energy and polarization/helicity angle, as well as the specific type of polarization (linear, circular, or elliptical). The mechanism lies in the structural inversion symmetry and real space spin polarization antisymmetry of the junctions.

View Article and Find Full Text PDF

Investigation of Interface-Induced Helicity-Dependent Photocurrent and High- Ferromagnetism in Wafer-Scale 2D Ferromagnetic FeGeTe/BiTe Heterostructures.

ACS Appl Mater Interfaces

December 2024

Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.

Article Synopsis
  • - The study investigates the helicity-dependent photocurrent (HDPC) in FeGeTe/BiTe heterostructures grown on sapphire substrates, revealing that the photocurrent is primarily driven by the circular photogalvanic effect (CPGE) due to the interface coupling of the materials.
  • - As tensile strain is applied, the CPGE current decreases because the strain reduces the interface-induced spin-orbit coupling; however, the 5 nm FeGeTe/BiTe sample can effectively detect circularly polarized light under the right conditions.
  • - The findings also indicate that the behavior of CPGE depends differently on FeGeTe film thickness compared to Curie temperature, suggesting that strong exchange interactions at the interface may enhance fer
View Article and Find Full Text PDF

Quantized Integrated Shift Effect in Multigap Topological Phases.

Phys Rev Lett

November 2024

TCM Group, Cavendish Laboratory, Department of Physics, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

We show that certain three-dimensional multigap topological insulators can host quantized integrated shift photoconductivities due to bulk invariants that are defined under reality conditions imposed by additional symmetries. We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms. Physically, we recognize that the topological quantization emerges purely from virtual transitions contributing to the optical response.

View Article and Find Full Text PDF

Manipulation of Helicity-Dependent Photocurrent and Stokes Parameter Detection in Topological Insulator BiTe Nanowires.

ACS Appl Mater Interfaces

July 2024

Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China.

Helicity-dependent photocurrent (HDPC) and its modulation in topological insulator BiTe nanowires have been investigated. It is revealed that when the incident plane of a laser is perpendicular to the nanowire, the HDPC is an odd function of the incident angle, which is mainly contributed by the circular photogalvanic effect originating from the surface states of BiTe nanowire. When the incident plane of a laser is parallel to the nanowire, the HDPC is approximately an even function of the incident angle, which is due to the circular photon drag effect coming from the surface states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!