The immune-regulatory compound histamine is involved in the metabolism of the essential skin component hyaluronan (HA). We previously reported that histamine up-regulates the expression of HYBID (hyaluronan-binding protein involved in hyaluronan depolymerization, also called CEMIP or KIAA1199), which plays a key role in HA degradation. However, no information is available about histamine's effects on HA synthase (HAS) expression, the molecular sizes of HA species produced, and histamine receptors and their signaling pathways in skin fibroblasts. Moreover, histamine's effects on photoaged skin remain elusive. Here, we show that histamine increases HA degradation by up-regulating HYBID and down-regulating in human skin fibroblasts in a dose- and time-dependent manner and thereby decreases the total amounts and sizes of newly produced HA. Histamine H1 blocker abrogated the histamine effects on HYBID up-regulation, suppression, and HA degradation. Histamine H1 agonist exhibited effects on HA levels, composition, and breakdown similar to those of histamine. Of note, blockade of protein kinase Cδ or PI3K-Akt signaling abolished histamine-mediated stimulation and suppression, respectively. Immunohistochemical experiments revealed a significant ∼2-fold increase in tryptase-positive mast cells in photoaged skin, where and expression levels were increased and decreased, respectively, compared with photoprotected skin. These results indicate that histamine controls HA metabolism by up-regulating and down-regulating via distinct signaling pathways downstream of histamine receptor H1. They further suggest that histamine may contribute to photoaged skin damage by skewing HA metabolism toward degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039545PMC
http://dx.doi.org/10.1074/jbc.RA119.010457DOI Listing

Publication Analysis

Top Keywords

skin fibroblasts
12
photoaged skin
12
histamine
11
skin
8
histamine's effects
8
produced histamine
8
signaling pathways
8
hybid
4
hybid alias
4
alias kiaa1199/cemip
4

Similar Publications

CLEC12B is a C-type lectin receptor involved in the inhibition of natural killers-mediated cytotoxicity. We have previously shown that CLEC12B is predominantly expressed on melanocytes, inhibits melanin production and pigmentation as well as proliferation of melanoma. To date, the role of CLEC12B in skin immunity is unknown.

View Article and Find Full Text PDF

Relative Frequency of Metachromatic Leukodystrophy in Egypt: A Reference Laboratory Report.

Front Biosci (Schol Ed)

December 2024

Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.

Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).

View Article and Find Full Text PDF

Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role.

View Article and Find Full Text PDF

Mitochondrial transplantation reconstructs the oxidative microenvironment within fibroblasts to reverse photoaging.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.

Fibroblast-mediated oxidative stress is a pivotal factor in the pathogenesis of skin photoaging, predominantly induced by UVA radiation. Diverging from traditional strategies that concentrate on the reduction of reactive oxygen species (ROS), the present study implements mitochondrial transplantation as an innovative therapeutic approach. The objective of this study is to reestablish the oxidative microenvironment and to effectively rejuvenate cellular functionality through the direct introduction of healthy and vibrant mitochondria.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!