Background And Purpose: Brain CTP is used to estimate infarct and penumbra volumes to determine endovascular treatment eligibility for patients with acute ischemic stroke. We aimed to assess the accuracy of a Bayesian CTP algorithm in determining penumbra and final infarct volumes.
Materials And Methods: Data were retrospectively collected for 105 patients with acute ischemic stroke (55 patients with successful recanalization [TICI 2b/2c/3] and large-vessel occlusions and 50 patients without interventions). Final infarct volumes were calculated using DWI and FLAIR 24 hours following CTP imaging. RAPID and the Vitrea Bayesian CTP algorithm (with 3 different settings) predicted infarct and penumbra volumes for comparison with final infarct volumes to assess software performance. Vitrea settings used different combinations of perfusion maps (MTT, TTP, CBV, CBF, delay time) for infarct and penumbra quantification. Patients with and without interventions were included for assessment of predicted infarct and penumbra volumes, respectively.
Results: RAPID and Vitrea default setting had the most accurate final infarct volume prediction in patients with interventions ([Spearman correlation coefficient, mean infarct difference] default versus FLAIR: [0.77, 4.1 mL], default versus DWI: [0.72, 4.7 mL], RAPID versus FLAIR: [0.75, 7.5 mL], RAPID versus DWI: [0.75, 6.9 mL]). Default Vitrea and RAPID were the most and least accurate in determining final infarct volume for patients without an intervention, respectively (default versus FLAIR: [0.76, -0.4 mL], default versus DWI: [0.71, -2.6 mL], RAPID versus FLAIR: [0.68, -49.3 mL], RAPID versus DWI: [0.65, -51.5 mL]).
Conclusions: Compared with RAPID, the Vitrea default setting was noninferior for patients with interventions and superior in penumbra estimation for patients without interventions as indicated by mean infarct differences and correlations with final infarct volumes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015204 | PMC |
http://dx.doi.org/10.3174/ajnr.A6395 | DOI Listing |
J Transl Med
January 2025
Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.
View Article and Find Full Text PDFJ Neurointerv Surg
January 2025
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
Background: Previous studies have shown that when thrombectomy has failed, rescue intracranial stenting is associated with better clinical outcomes compared with failed reperfusion. However, comparative data regarding stent type are lacking.
Objective: To compare the procedural and clinical outcomes of balloon-mounted stents (BMS) with those of self-expandable stents (SES).
Endovascular thrombectomy (EVT) dramatically improves clinical outcomes, but the final infarct volume (FIV) on MRI only accounts for a minority of the treatment effect. An imaging biomarker that more strongly correlates with post-EVT functional outcome would be helpful for clinical prognosis and serve as a surrogate outcome measure in trials of EVT-adjuvant therapies. Here, we aimed to validate a novel MRI-based metric, infarct density, which leverages post-EVT apparent diffusion coefficient (ADC) as a marker of infarct severity.
View Article and Find Full Text PDFCell Signal
January 2025
Jinhua Advanced Research Institute, Jinhua 321019, China. Electronic address:
Vascular calcification(VC) significantly increases the risk of cardiovascular events, leading to thickening of the myocardium and arteries, coronary heart disease, heart failure, and potentially triggering myocardial infarction and sudden cardiac death. Although VC is a reversible process, there are currently no methods or medications in clinical practice that can completely reverse or cure it. The current treatment strategies primarily focus on slowing the progression of VC and exploring new diagnostic and therapeutic approaches, making the identification of early diagnostic markers for VC particularly important.
View Article and Find Full Text PDFClin Drug Investig
January 2025
Department of Cardiology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Primary percutaneous coronary intervention (PPCI) and fibrinolytic or thrombolytic therapy are common treatments for ST-elevation myocardial infarction (STEMI). Primary percutaneous coronary intervention is more effective than thrombolytic therapy, but fibrinolytic therapy is still a preferable option for patients with limited access to healthcare. Alteplase is a tissue plasminogen activator (tPA) used to treat acute myocardial infarction, acute ischemic stroke, and pulmonary embolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!