Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits.

Food Microbiol

CRIOF - Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 46, 40127, Bologna, Italy. Electronic address:

Published: May 2020

Volatile compounds produced by L1 and L8 strains were assayed against mycelia and conidia growth of Monilinia laxa, M. fructicola, M. polystroma, and M. fructigena of stone fruits. Results showed that volatile metabolites inhibited significantly pathogens growth, in particular M. fructigena mycelium growth (70% by L1 and 50% by L8) and M. fructicola conidia germination (85% by L1 and 70% by L8) compared to the control. Moreover, the antagonistic activity was enhanced by the addition of asparagine (120 mg L) in the culture media composition. Synthetic pure compounds were tested in vitro on pathogens mycelial and conidia growth and their EC values were estimated, confirming 2-phenethyl as the most active compound. For this reason 2-phenethyl and VOCs of both yeast strains were assayed in vivo on cherry, peach, and apricot fruits. Regarding peach fruit, both treatments, yeasts and pure compounds, displayed the best inhibiting action against all the pathogens especially against M. laxa (100% by L1, 84% by L8 and 2-phenethyl). ATR/IR spectroscopy analysis showed how VOCs produced by both strains increase the fruit waxes complexity reducing the pathogens attack so playing an essential role in the antagonistic activity of both yeast strains and on fruit structural composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2019.103395DOI Listing

Publication Analysis

Top Keywords

stone fruits
8
fruits volatile
8
produced strains
8
strains assayed
8
conidia growth
8
antagonistic activity
8
pure compounds
8
yeast strains
8
aureobasidium pullulans
4
pullulans volatile
4

Similar Publications

Sharka disease, caused by the plum pox virus (PPV), negatively impacts stone fruit production, resulting in economic losses. It has been demonstrated that grafting the almond ( (Miller) D.A.

View Article and Find Full Text PDF

The genus includes numerous species, both cultivated and wild, offering significant genetic variability and economic potential that are often overlooked. Due to their high variability and ecological plasticity, jujube species and genotypes can be utilized in marginal areas and on land where few plants could be efficiently exploited. This study investigated variations in morphological characteristics (qualitative and quantitative), bioactive content (e.

View Article and Find Full Text PDF

In this study, the novel activated carbon developed from fruit stone, through hydrothermal treatment at low pressure and temperature, was utilized for the removal of 4-nitrophenol, 4-chlorophenol, and phenol from water. The activated carbon produced (AC-HTPEFS) showed a well-developed porosity with a surface area of 569 m g and a total pore volume of 0.342 cm g.

View Article and Find Full Text PDF

Dysbiosis of the gastrointestinal tract is the most common cause of disease in childhood and adulthood. The formation of the intestinal microbiome begins in utero, and composition modification during life depends mainly on various genetic, nutritional, and environmental factors. The main cause of intestinal dysbiosis is improper nutrition due to a short period of breastfeeding, insufficient intake of fresh fruits and vegetables, and/or consumption of a large amount of processed food.

View Article and Find Full Text PDF

Optimisation of activated carbon from fruit stones and shells derived via molten salt activation for dye removal.

Bioresour Technol

January 2025

Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.

Recent advancements in activated carbon production involve molten salt activation using a eutectic mixture of ZnCl-NaCl-KCl. This study explores the production of activated carbon from fruit waste, specifically walnut shells, using a 60:20:20 mol % eutectic mixture. Optimal conditions were identified through response surface methodology, with 400 °C and a salt-to-biomass ratio of 10 g/g, yielding a surface area of 276 m/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!