Indirect impedance has been used for the detection and enumeration of bacteria, however there is limited data regarding the ability of the method to measure growth and inhibition of microorganisms in food in response to preservatives. The aim of this study was to evaluate the suitability of the technique to determine maximum growth rates of Listeria innocua (used as a surrogate for Listeria monocytogenes) in complex food matrices to which multiple preservative factors had been applied and assess the suitability of the data for use in predictive microbiology. Growth of L. innocua in laboratory medium (BHI broth) and two food matrices (zucchini purée and béarnaise sauce) under varying conditions of pH (5 & 5.3), water activity (0.93, 0.96 & 0.98) and acetic and propionic acid concentration (0, 1 & 2 mM) was monitored by the conductimetric Rapid Automated Bacterial Impedance Technology (R.A.B.I.T) system by means of CO emission for up to 120 h. Growth rates of L. innocua were determined for several conditions across the three test matrices and a good correlation between detection times and initial inoculum level was observed in most cases (R ≥ 0.82). However, growth of L. innocua was not detected in a large number of conditions and comparison of growth rates determined by indirect impedance to those determined by plate counts indicated that in general, the R.A.B.I.T. system under-estimated growth. This study demonstrates that there are limitations associated with the technology, and as a result the system may be unsuitable for measuring microbial growth rates in complex food matrices under the environmental conditions tested and within the time duration of the study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2019.103381DOI Listing

Publication Analysis

Top Keywords

food matrices
16
growth rates
16
complex food
12
growth
9
impedance determined
8
listeria innocua
8
indirect impedance
8
growth innocua
8
rabit system
8
innocua
5

Similar Publications

Method Validation for Estimation of Imidacloprid and its Metabolites in Maize and Soil by LCMS-MS.

J Chromatogr Sci

January 2025

Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.

Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.

View Article and Find Full Text PDF

Recent Advances in Nontargeted Screening of Chemical Hazards in Foodstuffs.

Annu Rev Food Sci Technol

January 2025

1Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China;

The emergence of several chemical substances continues to enrich and facilitate the development of food science, but their irrational use also poses a threat to food safety and human health. Nontargeted screening (NTS) has become an important tool for rapid traceability and efficient identification of chemical hazards in food matrices. NTS in food analysis is highly integrated with sample pretreatment, instrumental analysis platforms, data acquisition and analysis, and toxicology.

View Article and Find Full Text PDF

Development and Validation of a Highly Sensitive Isotope-Coded Equivalent Reporter Ion Assay for the Semi-Quantification of Isocoumarins in Complex Matrices.

Anal Chem

January 2025

China-Croatia Belt and Road Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.

The accurate quantification of multicomponents using LC-MS is pivotal for ensuring the quality control of herbal medicine, as well as the investigation of their analysis of biological tissue distribution. However, two significant challenges persist: the scarcity of authentic standards and the selection of appropriate internal standards. In this study, we present a highly sensitive isotope-coded equivalent reporter ion assay (iERIA) that combines equivalently quantitative ion and isotope-coded derivatization strategies.

View Article and Find Full Text PDF

The occurrence of off-flavor in osmanthus absolutes has emerged as a significant concern that could hinder its broad market acceptance and associated economic development. In this study, key off-flavor molecules in industrial osmanthus absolute were identified through sensomics and chemometric approaches. A group of 10 off-flavor (OF) samples, eliciting smoky/phenolic, sweaty/sour, and spicy odors, were compared with 10 pleasant aroma (PA) samples through various analyses, including overall aroma assessment, comprehensive chemical profiling, aroma extract dilution analysis (AEDA), and orthogonal partial least-squares-discriminant analysis (OPLS-DA).

View Article and Find Full Text PDF

Improved Analysis of Glyphosate, Aminomethylphosphonic Acid, and Other Highly Polar Pesticides and Metabolites via the QuPPe Method by Employing Ethylenediaminetetraacetic Acid and IC-MS/MS.

J Agric Food Chem

January 2025

EU-Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM), Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach D-70736, Germany.

The quantification of glyphosate (Gly) and its metabolite aminomethylphosphonic acid (AMPA) in food is often impaired by matrix components. Specifically, interaction between the analytes and natural matrix components in food leads to reduced analyte recovery rates. Here, we studied how the addition of ethylenediaminetetraacetic acid (EDTA) impacted the QuPPe recovery rates of Gly and its metabolite in eight mostly problematic matrices using tandem mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!