Characterization of human telomerase reverse transcriptase immortalized anterior cruciate ligament cell lines.

Biomed J

Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center of Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany; Department of Orthopaedics and Traumatology, Hospital Agatharied, Teaching Hospital of the University of Munich, Agatharied, Germany.

Published: December 2019

Background: The anterior-cruciate-ligament (ACL) contains mesenchymal stem cells (ACL-MSCs), suggesting the feasibility of regenerative treatments of this tissue. The immortalization of isolated cells results in cell-lines applicable to develop cell-based therapies. Immortal cell lines eliminate the need for frequent cell isolation from donor tissues. The objective of this study was to characterize cell lines that were generated from isolated ACL-MSCs using TERT gene transfer.

Methods: We isolated ACL-MSCs from human ACLs derived at the time of ACL reconstruction surgery or total knee arthroplasty. We generated cell lines and compared them to non-immortalized ACL-MSCs. We assessed the cellular morphology and we detected surface antigen expression. The resistance to senescence was inferred using the beta galactosidase activity. Histology, immunohistochemistry, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to evaluate the multilineage differentiation capacity.

Results: The morphology of hTERT-ACL-MSCs was similar to ACL up to the last assessment at passage eight. We detected a strong surface expression of CD44, CD90, CD105, and STRO-1 in hTERT-ACL-MSCs. No substantial reduction in the ATP activity was observed in hTERT-ACL-MSCs.

Conclusion: Cell lines generated from ACL-MSCs maintain their morphology, surface antigen expression profile, and proliferative capacity; while markers of senescence appear to be reduced. These cell-lines maintained their multilineage differentiation capacity. The demonstrated model systems can be used for further development of new cell-based regenerative approaches in anterior cruciate ligament research, which may lead to new therapeutic strategies in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962762PMC
http://dx.doi.org/10.1016/j.bj.2019.05.005DOI Listing

Publication Analysis

Top Keywords

cell lines
20
reverse transcriptase
8
anterior cruciate
8
cruciate ligament
8
lines generated
8
isolated acl-mscs
8
surface antigen
8
antigen expression
8
multilineage differentiation
8
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!