Dual-energy spectral CT quantitative parameters for the differentiation of Glioma recurrence from treatment-related changes: a preliminary study.

BMC Med Imaging

Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.

Published: January 2020

Background: Differentiating glioma recurrence from treatment-related changes can be challenging on conventional imaging. We evaluated the efficacy of quantitative parameters measured by dual-energy spectral computed tomographic (CT) for this differentiation.

Methods: Twenty-eight patients were examined by dual-energy spectral CT. The effective and normalized atomic number (Z and Z respectively); spectral Hounsfield unit curve (λ) slope; and iodine and normalized iodine concentration (IC and IC, respectively) in the post-treatment enhanced areas were calculated. Pathological results or clinicoradiologic follow-up of ≥2 months were used for final diagnosis. Nonparametric and t-tests were used to compare quantitative parameters between glioma recurrence and treatment-related changes. Sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively), and accuracy were calculated using receiver operating characteristic (ROC) curves. Predictive probabilities were used to generate ROC curves to determine the diagnostic value.

Results: Examination of pre-contrast λ, Z, Z, IC, IC, and venous phase IC showed no significant differences in quantitative parameters (P > 0.05). Venous phase λ, Z, Z, and IC in glioma recurrence were higher than in treatment-related changes (P < 0.001). The optimal venous phase threshold was 1.03, 7.75, 1.04, and 2.85 mg/cm, achieving 66.7, 91.7, 83.3, and 91.7% sensitivity; 100.0, 77.8, 88.9, and 77.8% specificity; 100.0, 73.3, 83.3, and 73.3% PPV; 81.8, 93.3, 88.9, and 93.3% NPV; and 86.7, 83.3, 86.7, and 83.3% accuracy, respectively. The respective areas under the curve (AUCs) were 0.912, 0.912, 0.931, and 0.910 in glioma recurrence and treatment-related changes.

Conclusions: Glioma recurrence could be potentially differentiated from treatment-related changes based on quantitative values measured by dual-energy spectral CT imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966828PMC
http://dx.doi.org/10.1186/s12880-019-0406-5DOI Listing

Publication Analysis

Top Keywords

quantitative parameters
16
glioma recurrence
16
treatment-related changes
16
dual-energy spectral
12
recurrence treatment-related
12
roc curves
8
venous phase
8
quantitative
4
spectral quantitative
4
parameters
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Actinogen Medical, Sydney, Australia.

Background: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.

View Article and Find Full Text PDF

Purpose: (Tumor-educated platelets) TEPs have emerged as active players in all steps of tumorigenesis, confrontation of platelets with tumor cells via transfer of tumor-associated biomolecules and results in the sequestration of such biomolecules. The current study was aimed to examine whether TEPs lncRNA-STARD4-AS1 and ELOA-AS1 might be potential biomarkers for NSCLC.

Materials And Methods: TEPs were obtained by low-speed centrifugation.

View Article and Find Full Text PDF

Objective: A novel approach to 3-dimensional morphometry of the thoracic aorta was developed by applying centerline analysis based on least-squares plane fitting, and a preliminary study was conducted using computed tomography imaging data.

Methods: We retrospectively compared 3 groups of patients (16 controls without aortic disease, and 16 cases each with acute type B aortic dissection and congenital bicuspid aortic valve). In addition to the standard assessment indices for curvature κ and torsion τ, we conducted coordinate transformation based on the least-squares plane, divided the centerline into 3 representative features (transverse, anterior-posterior, and longitudinal displacements), and analyzed the overall and local displacement in each direction.

View Article and Find Full Text PDF

Objective: To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.

Materials And Methods: A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!