Liberating Active Metals from Reducible Oxide Encapsulation for Superior Hydrogenation Catalysis.

ACS Appl Mater Interfaces

Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.

Published: February 2020

The strong metal-support interaction (SMSI) is of significant importance to heterogeneous catalysis. The electronic modification and encapsulation of active metals by reducible supports are the intrinsic properties of the SMSI, where the latter would decrease or even cease the catalytic activity of transition metals. Here, we demonstrate for the first time that alkalies are the functional additives that can effectively manipulate the SMSI for better hydrogenation catalysis. Specifically, both thermodynamic analyses and experimental results show that the addition of alkalies to the Ru/TiO catalyst could form a titanate top layer that effectively hampers the migration of TiO to the surface of Ru nanoparticles. In the meantime, a substantially enhanced reduction of the support is achieved, leading to an even stronger electron donation from the support to Ru. The alkali-modified Ru/TiO exhibits superior low-temperature catalytic activity in the hydrogenation of aromatics, which is ca. an order of magnitude higher than that of the commercial Ru/AlO catalyst and is in clear contrast to that of the neat Ru/TiO catalyst that shows negligible activity due to the severe encapsulation of Ru by TiO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b17805DOI Listing

Publication Analysis

Top Keywords

active metals
8
metals reducible
8
hydrogenation catalysis
8
catalytic activity
8
ru/tio catalyst
8
liberating active
4
reducible oxide
4
oxide encapsulation
4
encapsulation superior
4
superior hydrogenation
4

Similar Publications

Chemoselectivity in Pd-Based Dyotropic Rearrangement: Development and Application in Total Synthesis of Pheromones.

J Am Chem Soc

January 2025

Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland.

In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.

View Article and Find Full Text PDF

Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!