High humidity decreases the penetration rate of barley powdery mildew f. sp. . However, the mechanism is not well understood. In this study, the morphological and cytochemical analyses revealed that substances containing proteins leaked from the tip of the appressorial germ tube of conidia without the formation of appressorium under a high humidity condition. In addition, exposure to high humidity prior to the formation of appressorium caused the aberrant formation of the appressorial germ tube without appressorium formation, resulting in failure to penetrate the host cell. These findings suggest that the formation and maturation of the appressorium requires a low humidity condition, and will be clues to improve the disease management by humidity control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168686PMC
http://dx.doi.org/10.3390/pathogens9010045DOI Listing

Publication Analysis

Top Keywords

high humidity
16
appressorial germ
8
germ tube
8
formation appressorium
8
humidity condition
8
formation
6
humidity
5
high
4
humidity abnormalities
4
abnormalities process
4

Similar Publications

The electrical resistance (ER) method is widely used for atmospheric corrosion measurements and can be used to measure the corrosion rate accurately. However, severe errors occur in environments with temperature fluctuations, such as areas exposed to solar radiation, preventing accurate temporal corrosion rate measurement. To decrease the error, we developed an improved sensor composed of a reference metal film and an overlaid sensor metal film to cancel temperature differences between them.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.

View Article and Find Full Text PDF

Effect of Chemical Treatment on the Mechanical and Hygroscopic Properties of an Innovative Clay-Sand Composite Reinforced with Fibers.

Materials (Basel)

January 2025

Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.

The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Study on the Aging Effects of Relative Humidity on the Primary Chemical Components of Palm Leaf Manuscripts.

Polymers (Basel)

December 2024

Key Laboratory of Archaeomaterials and Conservation, Ministry of Education, Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China.

Palm Leaf Manuscripts represent a significant component of the world's cultural heritage. Investigating their primary chemical components and understanding the transformations these materials undergo under environmental influences are crucial for elucidating their material characteristics and aging mechanisms and developing effective strategies for preventive conservation. This study utilized infrared absorption spectroscopy and X-ray diffraction analysis to examine changes in the primary chemical components of Palm Leaf Manuscripts under varying relative humidity conditions over extended periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!