A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Protein Immobilization on Polymers-A Plasma Surface Activation Study. | LitMetric

Enhanced Protein Immobilization on Polymers-A Plasma Surface Activation Study.

Polymers (Basel)

Laboratory for Sensors, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany.

Published: January 2020

Over the last years, polymers have gained great attention as substrate material, because of the possibility to produce low-cost sensors in a high-throughput manner or for rapid prototyping and the wide variety of polymeric materials available with different features (like transparency, flexibility, stretchability, etc.). For almost all biosensing applications, the interaction between biomolecules (for example, antibodies, proteins or enzymes) and the employed substrate surface is highly important. In order to realize an effective biomolecule immobilization on polymers, different surface activation techniques, including chemical and physical methods, exist. Among them, plasma treatment offers an easy, fast and effective activation of the surfaces by micro/nanotexturing and generating functional groups (including carboxylic acids, amines, esters, aldehydes or hydroxyl groups). Hence, here we present a systematic and comprehensive plasma activation study of various polymeric surfaces by optimizing different parameters, including power, time, substrate temperature and gas composition. Thereby, the highest immobilization efficiency along with a homogenous biomolecule distribution is achieved with a 5-min plasma treatment under a gas composition of 50% oxygen and nitrogen, at a power of 1000 W and a substrate temperature of 80 °C. These results are also confirmed by different surface characterization methods, including SEM, XPS and contact angle measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023393PMC
http://dx.doi.org/10.3390/polym12010104DOI Listing

Publication Analysis

Top Keywords

surface activation
8
activation study
8
plasma treatment
8
substrate temperature
8
gas composition
8
enhanced protein
4
protein immobilization
4
immobilization polymers-a
4
plasma
4
polymers-a plasma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!