Genomic imprinting in domestic animals contributes to the variance of performance traits. However, research remains to be done on large-scale detection of epigenetic landscape of porcine imprinted loci including the GNAS complex locus. The purpose of this study was to generate porcine parthenogenetic fetuses and comprehensively identify imprinting patterns of the GNAS locus in transcript levels. To this end, both normally fertilized and bimaternal (uniparental) parthenogenetic porcine fetuses were generated, and whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were performed to construct methylome and transcriptome, respectively. Differentially methylated regions (DMRs) between the fetuses were identified through methylome analysis, and parental-origin-specific expression patterns of transcripts were examined with transcriptome. As a result, three major DMRs were identified: paternally methylated DMR, maternally methylated - DMR, and maternally methylated DMR. Parental-origin-specific expressions of those five DMR-affected transcripts were found, including a novel imprinted transcript, Exon1B, in pigs. In conclusion, using parthenotes, parental-origin-specific imprinting patterns in the porcine GNAS locus was comprehensively identified, and our approach paves the way for the discovery of novel imprinted genes and loci in a genomic context across species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017182PMC
http://dx.doi.org/10.3390/genes11010096DOI Listing

Publication Analysis

Top Keywords

novel imprinted
12
methylated dmr
12
imprinted transcript
8
complex locus
8
methylome transcriptome
8
parthenogenetic fetuses
8
imprinting patterns
8
gnas locus
8
dmr maternally
8
maternally methylated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!