Recently, the interest in industrial by-products produced at the local level in Mediterranean areas, resulting from fruit and vegetable processes, has increased because of their considerable amounts of bioactive compounds, including polyphenols. In this review, we analyze the most recent scientific results concerning the use of agro-industrial by-products, naturally rich in polyphenols (BPRP), in the diets of small dairy ruminants. Effects on milk production, milk and rumen liquor fatty acid profile, metabolic parameters, and methane production are reviewed. The feed intake and digestibility coefficients were generally depressed by BPRP, even though they were not always reflected in the milk yield. The main observed positive effects of BPRP were on quality of the milk's FA profile, antioxidant activity in milk and blood, a reduction of rumen ammonia, and, consequently, a reduction of milk and blood urea. The expected beneficial effects of dietary polyphenols in small ruminants were not always observed because of their complex and variable matrices. However, owing to the large quantities of these products available at low prices, the use of BPRB in small ruminant nutrition offers a convenient solution to the valorization of residues arising from agricultural activities, reducing feed costs for farmers and conferring added value to dairy products at the local level, in a sustainable way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022336 | PMC |
http://dx.doi.org/10.3390/ani10010131 | DOI Listing |
Food Chem
December 2024
Departamento de Nutrición y Dietética, Escuela de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile.. Electronic address:
Background: Pomegranate peel extract (PPE) is rich in polyphenols, notably punicalagin and ellagic acid, but is sensitive to environmental degradation and has low bioavailability. Microencapsulation can enhance PPE stability and bioaccessibility, making it suitable for functional foods like jelly gummies (JG). JG containing microencapsulated PPE (MPPE) have not been studied.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of International Development, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK.
The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.
View Article and Find Full Text PDFVet Anim Sci
March 2025
International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia.
This study assessed the supplemental effect of flushing Menz breeding rams with local agro-industrial by-products on their reproductive performance and semen quality. In a completely randomized design, rams ( 49) with an initial weight of 25.69+2.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
School of Bioengineering, Dalian University of Technology, Dalian, China.
Background: Solid-state fermentation is one of the most effective methods for the high-value utilization of agro-industrial by-products. Co-fermentation of wet distiller grains and agricultural waste is an effective way to mitigate the feed shortage caused by corn consumption for bioethanol. It is still challenging to convert wet distiller grains and wheat bran to easily accessible carbon sources and adjust the balanced proportion of amino acids together by fermentation.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil.
The Amazon Region (AR), with its vast biodiversity and rich natural resources, presents a unique opportunity for the development of sustainable polymer composites (PCs) reinforced with residues from both timber and agro-extractivism industries. This study explores the potential of Amazonian residues, such as sawdust, wood shavings, and agro-industrial by-products such as açaí seeds and Brazil nut shells, to enhance the mechanical, thermal, and environmental properties of polymer composites. By integrating these natural materials into polymer matrices, significant improvements in the composite performance were achieved, including increased tensile strength, thermal stability, and biodegradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!