Neural systems are complicated networks connected by a large number of neurons through gap junctions and synapse. At present, for electron microscopy connectomics research, neuron structure recognition algorithms mostly focus on synapses, dendrites, axons and mitochondria, etc. However, effective methods for automatic recognition of neuronal cell bodies are rare. In this paper, we proposed an effective encoderdecoder network, which extracted segmentation features of neural cell bodies and cell nucleus by the modified residual network and pyramid module. The framework is capable of merging multi-scale contextual information and generating efficient segmentation results by integrating multilevel features. We applied this proposed network on two segmentation tasks for electron microscope (EM) images and compared it with other promising methods as U-Net and deeplab v3+. The results demonstrated that our method achieved the state-of-the-art performance on quality metrics. Finally, we visualized two intact neural cell bodies and cell nucleus to provide a close look into these fine structures.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8857887DOI Listing

Publication Analysis

Top Keywords

cell bodies
16
neural cell
12
bodies cell
12
cell nucleus
12
cell
7
effective encoder-decoder
4
network
4
encoder-decoder network
4
neural
4
network neural
4

Similar Publications

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Background: The impact of fatty liver disease on lumbar bone mineral density (BMD) represents an intriguing area of study, particularly in light of established research linking obesity to bone metabolism. However, there remains limited investigation into the correlation between quantifying liver fat content (LFC) and lumbar BMD among overweight and obese populations, particularly within the Chinese demographic. This study aims to accurately quantify LFC and investigate its association with lumbar BMD in overweight or obese individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!