A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid Neural Networks for Mortality Prediction from LDCT Images. | LitMetric

Known for its high morbidity and mortality rates, lung cancer poses a significant threat to human health and well-being. However, the same population is also at high risk for other deadly diseases, such as cardiovascular disease. Since Low-Dose CT (LDCT) has been shown to significantly improve the lung cancer diagnosis accuracy, it will be very useful for clinical practice to predict the all-cause mortality for lung cancer patients to take corresponding actions. In this paper, we propose a deep learning based method, which takes both chest LDCT image patches and coronary artery calcification risk scores as input to predict the mortality risk of lung cancer subjects. The proposed method is called Hybrid Risk Network (HyRiskNet) for mortality risk prediction, which is an end-to-end framework utilizing hybrid imaging features, instead of completely relying on automatic feature extraction. Our work demonstrates the feasibility of using deep learning techniques for all-cause lung cancer mortality prediction from chest LDCT images. The experimental results show that HyRiskNet can achieve superior performance compared with the neural networks with only image input and with other traditional semi-automatic scoring methods. The study also indicates that radiologist defined features can well complement convolutional neural networks for more comprehensive feature extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8857180DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
neural networks
12
mortality prediction
8
ldct images
8
deep learning
8
chest ldct
8
mortality risk
8
feature extraction
8
mortality
6
lung
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!