In order to effectively record from electrically active cells through microelectrode arrays a low-noise amplification and data acquisition system is required. Although commercially available, these systems can be expensive and lack the freedom to customise hardware and software. In this work we present a low-cost (US$21 for the first channel + US$11 for each additional channel), low-noise amplifier coupled with an analog to digital converter from National Instruments. The amplifier was designed to (i) operate between 0 and 5 V utilising a DC battery power supply, (ii) operate within a bandwidth of 10 kHz, (iii) remove DC voltage created at the electrode/electrolyte interface with a high-pass cut-off frequency of 0.7 Hz and (iv) have a gain of 2000. Strategies to reduce environment electromagnetic interference at the amplifier front end were employed and involved a customised neural interface board connected between the microelectrode array and amplifier. The constructed amplifier achieved an intrinsic noise amplitude of 0.8 μV, which facilitated high quality recordings as exemplified by in vitro recordings from primary hippocampal neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8857196 | DOI Listing |
J Neural Eng
January 2025
Precision Neuroscience, 54 W 21st Street, New York, New York, 10010, UNITED STATES.
Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA. Electronic address:
Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, 20-031 Lublin, Poland.
This article reports on the long-term use, solid bismuth microelectrode arrays for the first time. The presented working microelectrode is characterized by particular advantages compared to bismuth film electrodes and solid single bismuth microelectrodes; these advantages include environmentally friendly properties and the amplification of recorded currents, which are subsequently more resistant to interference. The proposed solid bismuth microelectrode array was applied to develop an adsorptive stripping voltammetric procedure for Sunset Yellow determination.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
The spatial propagation of neuronal activity within neuronal circuits, which is associated with brain functions, such as memory and learning, is regulated by external stimuli. Conventional external stimuli, such as electrical inputs, pharmacological treatments, and optogenetic modifications, have been used to modify neuronal activity. However, these methods are tissue invasive, have insufficient spatial resolution, and cause irreversible gene modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!