Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pneumonia is a common infectious disease in the world. Its main diagnostic method is chest X-ray (CXR) examination. However, the high visual similarity between a large number of pathologies in CXR makes the interpretation and differentiation of pneumonia a challenge. In this paper, we propose an improved convolutional neural network (CNN) model for pneumonia detection. In order to guide the CNN to focus on disease-specific attended region, the pneumonia area of image is erased and marked as a non-pneumonia sample. In addition, transfer learning is used to segment the interest region of lungs to suppress background interference. The experimental results show that the proposed method is superior to the state-of-the-art object detection model in terms of accuracy and false positive rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8857277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!