Resting-state functional magnetic resonance imaging (rs-fMRI) is commonly employed to study changes in functional brain connectivity. Recently, the hypothesis of a brain involvement in primary open angle glaucoma has sprung interest for neuroimaging studies in this pathology. The purpose of this study is to evaluate a putative reorganization of brain networks in glaucomatous patients through graph-theoretical measures of integration, segregation and centrality by exploiting a multivariate networks association measure and a recently introduced global and local brain network disruption index. Nineteen glaucoma patients and sixteen healthy control subjects (age: 50 - 76, mean 61 years) underwent rs-fMRI examination at 3T. After preprocessing, rs-fMRI time series were parcellated into 116 regions (AAL atlas), adjacency matrices were computed based on partial correlations and graph-theoretical measures of integration, segregation and centrality as well as group-wise and subject-wise disruption index estimates were generated for all subjects. We found that the group-wise disruption index was negative and statistically different from 0 in for all graph theoretical metrics. Additionally, statistically significant group-wise differences in subject-wise disruption indexes were found in all local metrics. The differences in local network measures highlight cerebral reorganization of brain networks in glaucoma patients, supporting the interpretation of glaucoma as central nervous system disease, likely part of the heterogeneous group of recently described disconnection syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8857290DOI Listing

Publication Analysis

Top Keywords

brain network
8
primary open
8
open angle
8
angle glaucoma
8
reorganization brain
8
brain networks
8
graph-theoretical measures
8
measures integration
8
integration segregation
8
segregation centrality
8

Similar Publications

VcaNet: Vision Transformer with fusion channel and spatial attention module for 3D brain tumor segmentation.

Comput Biol Med

January 2025

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China. Electronic address:

Accurate segmentation of brain tumors from MRI scans is a critical task in medical image analysis, yet it remains challenging due to the complex and variable nature of tumor shapes and sizes. Traditional convolutional neural networks (CNNs), while effective for local feature extraction, struggle to capture long-range dependencies crucial for 3D medical image analysis. To address these limitations, this paper presents VcaNet, a novel architecture that integrates a Vision Transformer (ViT) with a fusion channel and spatial attention module (CBAM), aimed at enhancing 3D brain tumor segmentation.

View Article and Find Full Text PDF

Aging inevitably gives rise to many challenges and transitions that can greatly impact our (mental) well-being and quality of life if these are not controlled adequately. Hence, the key to successful aging may not be the absence of these stressors, but the ability to demonstrate resilience against them. The current study set out to explore how resilience and successful aging may intersect by investigating how various resilience capacity-promoting (protective) and resilience capacity-reducing (risk) factors relate to mental well-being and quality of life.

View Article and Find Full Text PDF

Behavioral dysfunctions in dogs represent one of the main social concerns, since they can endanger animals and human-dog relationship. Together with the trigger stimulus (human, animal, place, scent, auditory stimuli, objects), dogs can experience stressful conditions, either in multiple settings or unique situations, more often turning into generalized fear. Such a dysfunctional behavior can be associated with genetic susceptibility, environmental factors, traumatic experiences, and medical conditions.

View Article and Find Full Text PDF

Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.

View Article and Find Full Text PDF

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!