We describe a method for fabricating a three-dimensional hollow and elastic aneurysm model, which is useful for surgical clipping simulation. In this paper, we explain the generation of such hollow elastic model, based on 3D printing. Also, we report on the effects of applying it to presurgical clipping election and simulation. The advantages of this methodology are: (1) it generates a hollow and flexible 3D biomodel, represented as the vascular areas, apart from having together the skull, as a reference system; (2) it employs an inexpensive and easy to reproduce methodology; (3) it helps not only for training neurosurgeons, but also for planning and guiding the actual surgery clip's insertion.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8856514DOI Listing

Publication Analysis

Top Keywords

hollow elastic
12
three-dimensional hollow
8
clipping election
8
elastic models
4
models intracranial
4
intracranial aneurysm
4
aneurysm clipping
4
election case
4
case study
4
study describe
4

Similar Publications

Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.

View Article and Find Full Text PDF

The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).

View Article and Find Full Text PDF

Microneedles (MNs) offer the potential for discrete and painless transdermal drug delivery, yet poor insertion and dosing consistency have hindered their clinical translation. Specifically, hollow MNs are appropriate for the administration of liquid modalities, including insulin, which could prove to be beneficial for patients with type 1 diabetes mellitus. This work aimed to design and manufacture a hollow MN with an improved insertion and delivery profile suitable for insulin administration.

View Article and Find Full Text PDF

Study on eccentric compressive performance of circular double skin concrete filled steel tube connected by thread through inside lining tube.

Sci Rep

November 2024

School of Civil Engineering, University of Science and Technology Liaoning, No. 189 Qianshan Middle Road, Lishan District, Anshan City, 114051, Liaoning Province, People's Republic of China.

Connection method of lengthening the steel tube of circular hollow sandwich concrete-filled steel tube by inside lining tube and thread is proposed. Twelve circular hollow sandwich concrete filled steel tubular beam-column connected by thread through inside lining tube are designed and fabricated using the length of the thread along the axial direction, the working height of the thread, and the position of the thread as parameters; In addition, one unconnected specimen and two welded specimens also are designed and fabricated to conduct controlled experimental research. The test phenomena and failure modes, axial compressive load-compression curve, axial compressive load-lateral deflection curve, and axial compressive load-strain in steel tube curve, as well as bearing capacity, strength reservation, deflection curve shape, lateral stiffness, ductility and plane section assumption are analyzed.

View Article and Find Full Text PDF

Easy-to-use formulations based on the homogenization theory for vascular stent design and mechanical characterization.

Comput Methods Programs Biomed

December 2024

Department of Mechanical and Aerospace Engineering, Polito(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Turin 10129, Italy. Electronic address:

Background And Objectives: Vascular stents are scaffolding structures implanted in the vessels of patients with obstructive disease. Stents are typically designed as cylindrical lattice structures characterized by the periodic repetition of unit cells. Their design, including geometry and material characteristics, influences their mechanical performance and, consequently, the clinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!