Cardiac function deterioration of heart failure patients is frequently manifested by the occurrence of decompensation events. One relevant step to adequately prevent cardiovascular status degradation is to predict decompensation episodes in order to allow preventive medical interventions.In this paper we introduce a methodology with the goal of finding onsets of worsening progressions from multiple physiological parameters which may have predictive value in decompensation events. The best performance was obtained for the model composed by only two features using a telemonitoring dataset (myHeart) with 41 patients. Results were achieved by applying leave-one-subject-out validation and correspond to a geometric mean of 83.67%. The obtained performance suggests that the methodology has the potential to be used in decision support solutions and assist in the prevention of this public health burden.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8857591DOI Listing

Publication Analysis

Top Keywords

decompensation events
12
heart failure
8
latent states
4
states extraction
4
extraction kalman
4
kalman filter
4
filter prediction
4
prediction heart
4
decompensation
4
failure decompensation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!