Cortical thickness measurement estimated from high-resolution anatomical MRI scans may serve as a marker of cortical atrophy in clinical research applications. Most of the working algorithms and pipelines are optimized for human in-vivo data analyses that offer robust and reproducible measures. As animal-models are widely utilized in many preclinical phases of clinical trials the need for an optimized automated MRI data analysis to yield reliable data is warranted. We present a processing pipeline optimized for cortical thickness estimation of canine brains in native and template spaces. Preliminary results of 5 healthy and 5 mucopolysaccharidosis (MPS) dogs demonstrate single-canine mean/median cortical thickness in range of 2.69-3.58mm in native space and 3.26-4.15mm in template space. Our MRI generated values exceed previous histological measurements (observed mean about 2mm) in limited literature reports. Randomly selected manual measures corroborated the ranges defined by estimated cortical thickness probability density functions. Geometric transformations between native and template spaces change absolute mean/median cortical thickness values, but do not change the data nature and properties since the Pearson correlation coefficients between different space estimates were 0.84 for mean values and 0.89 for median values. No significant difference in total cortical thickness between MPS and age-and gender-matched dogs was observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366836 | PMC |
http://dx.doi.org/10.1109/EMBC.2019.8856826 | DOI Listing |
JAMA Netw Open
December 2024
Department of Psychological and Brain Sciences, Washington University in St Louis, Missouri.
Importance: The extent to which neuroanatomical variability associated with early substance involvement, which is associated with subsequent risk for substance use disorder development, reflects preexisting risk and/or consequences of substance exposure remains poorly understood.
Objective: To examine neuroanatomical features associated with early substance use initiation and to what extent associations may reflect preexisting vulnerability.
Design, Setting, And Participants: Cohort study using data from baseline through 3-year follow-up assessments of the ongoing longitudinal Adolescent Brain Cognitive Development Study.
J Comp Neurol
January 2025
Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA.
Paleoneurology reconstructs the evolutionary history of nervous systems through direct observations from the fossil record and comparative data from extant species. Although this approach can provide direct evidence of phylogenetic links among species, it is constrained by the availability and quality of data that can be gleaned from the fossil record. Here, we sought to translate brain component relationships in a sample of extant Carnivora to make inferences about brain structure in fossil species.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
Background: Plasma and cerebrospinal (CSF) biomarkers are promising candidates for detecting neuropathology. While CSF biomarkers directly reflect pathophysiological processes within the central nervous system, their requirement for a lumbar puncture is a barrier to their widespread scalability in practice. Therefore, we examined cross-sectional associations of plasma biomarkers of amyloid (Aβ42/Aβ40 and pTau-181), neurodegeneration (Neurofilament Light, NfL), and neuroinflammation (Glial Fibrillary Acidic Protein, GFAP) with brain volume, cognition, and their corresponding CSF levels.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec city, QC, Canada.
Background: Type 2 diabetes (T2D) is a prevalent health condition associated with cognitive impairment and dementia. T2D induces adverse effects not only on the pancreas but also on the liver, kidneys, muscles, fat cells, and, notably, the brain. Both T2D and Alzheimer's disease (AD) exhibit associations with neurodegeneration, yet the extent of their shared patterns of brain atrophy remains poorly understood, potentially indicating common pathways.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: White matter hyperintensities (WMH) were reported to contribute to the thinning of regional cortex connected to WMH in cerebral small vessel disease. However, the relationship between WMH and regional changes in WMH-connected cortex in Alzheimer's disease (AD) remains unclear. The objective of this study is to investigate the association between WMH and regional cortical thickness, amyloid and tau deposition, and synaptic density changes in the WMH-connected cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!