Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper evaluates the use of breath sound recordings to automatically determine the respiratory health status of a subject. A number of features were investigated and Wilcoxon Rank Sum statistical test was used to determine the significance of the extracted features. The significant features were then passed to a feature selection algorithm based on mutual information, to determine the combination of features that provided minimal redundancy and maximum relevance. The algorithm was tested on a publicly accessible respiratory sounds database. With the testing dataset, the trained classifier achieved accuracy of 87.1%, sensitivity of 86.8% and specificity of 93.6%. These are promising results showing the possibility of determining the presence or absence of respiratory disease using breath sounds recordings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8857154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!