We propose a Deep Convolutional Neural Network (CNN) architecture for computing a Compensatory Reserve Metric (CRM) for trauma victims suffering from hypovolemia (decreased circulating blood volume). The CRM is a single health indicator value that ranges from 100% for healthy individuals, down to 0% at hemodynamic decompensation - when the body can no longer compensate for blood loss. The CNN is trained on 20 second blood pressure waveform segments obtained from a finger-cuff monitor of 194 subjects. The model accurately predicts CRM when tested on data from 22 additional human subjects obtained from Lower Body Negative Pressure (LBNP) emulation of hemorrhage, attaining a mean squared error (MSE) of 0.0238 over the full range of values, including those from subjects with both low and high tolerance to central hypovolemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8857116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!