Cervical Dystonia (CD) is a neurological movement disorder characterized by intermittent muscle contractions in the head and neck. The pathophysiology and neural networks underpinning this condition are incompletely understood. There is increasing evidence that isolated focal dystonias are due to network-wide functional alterations. An abnormal temporal discrimination threshold (TDT) is believed to be a mediational endophenotype due to its prevalence in unaffected first-degree relatives as well as patients. However the neural correlates linking abnormal TDT and CD remain poorly understood. Probing changes in large-scale network topology via graph theory with resting state fMRI data from relatives and patients may provide further insight into the pathophysiology of CD. In this study, resting state fMRI data were acquired and analyzed from 16 CD patients with abnormal TDT, 32 unaffected first degree relatives (16 with normal TDT and 16 with abnormal TDT) and 16 healthy controls. Graph theory metrics demonstrating network topology were extracted. The results indicate large-scale functional reorganization of networks in relatives (with abnormal TDT) along with a manifestation of topological aberrations similar to patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2019.8856624DOI Listing

Publication Analysis

Top Keywords

abnormal tdt
16
network topology
12
graph theory
12
cervical dystonia
8
resting state
8
state fmri
8
fmri data
8
tdt
6
patients
5
relatives
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!