Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a novel approach to monitor office workers' behavioral patterns and heart rate variability. We integrated an EMFi sensor into a chair to measure the pressure changes caused by a user's body movements and heartbeat. Then, we employed machine learning methods to develop a classification model through which different work behaviors (body moving, typing, talking and browsing) could be recognized from the sensor data. Subsequently, we developed a BCG processing method to process the data recognized as `browsing' and further calculate heart rate variability. The results show that the developed model achieved classification accuracies of up to 91% and the HRV could be calculated effectively with an average error of 5.77ms. By combining these behavioral and physiological measures, the proposed approach portrays work-related stress in a more comprehensive manner and could contribute an unobtrusive early stress detection system for future smart offices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8856597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!