Introduction: Deep brain stimulation (DBS) for movement disorders has been mainly performed with constant voltage (CV) technology. More recently also constant current (CC) systems have been developed which theoretically might have additional advantages. Furthermore, rechargeable (RC) system implantable pulse generators (IPG) are increasingly being used rather than the former solely available non-rechargeable (NRC) IPGs.

Objective: To provide a systematic investigation how to proceed and adapt settings when switching from CV NRC to CC RC technology.

Methods: We prospectively collected data from 11 consecutive patients (10 men, mean age at DBS implantation 52.6 ± 14.0 years) with chronic DBS for dystonia (n = 7), Parkinson disease (n = 3), and essential tremor (n = 1) who underwent IPG replacement switching from a CV NRC system (Activa® PC; Medtronic®) to a CC RC system (Vercise® RC; Boston Scientific®). Systematic assessments before and after IPG replacement were performed.

Results: DBS technology switching at the time of IPG replacement due to battery depletion was at a mean of 108.5 ± 46.2 months of chronic DBS. No perioperative complications occurred. Clinical outcome was stable with overall mild improvements or deteriorations, which could be dealt with in short-term follow-up. Patients were satisfied with the new RC IPG.

Conclusions: This study confirms both the safety and feasibility of switching between different DBS technologies (CV to CC, NRC to RC, different manufacturers) in patients with chronic DBS. Furthermore, it shows how the management can be planned using available information from the previous DBS settings. Individual assessment is needed and might partly be related to the DBS target and the underlying disease. MR safety might be a problem with such hybrid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000505076DOI Listing

Publication Analysis

Top Keywords

chronic dbs
12
ipg replacement
12
dbs
9
patients chronic
8
deep brain
8
brain stimulation
8
constant voltage
8
constant current
8
switching nrc
8
switching
5

Similar Publications

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Protocol for artificial intelligence-guided neural control using deep reinforcement learning and infrared neural stimulation.

STAR Protoc

December 2024

Weldon School of Biomedical Engineering, the Center for Implantable Devices, and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. Electronic address:

Closed-loop neural control is a powerful tool for both the scientific exploration of neural function and for mitigating deficiencies found in open-loop deep brain stimulation (DBS). Here, we present a protocol for artificial intelligence-guided neural control in rats using deep reinforcement learning (RL) and infrared neural stimulation (INS). We describe steps for integrating RL closed-loop control into neuroscience and neuromodulation studies.

View Article and Find Full Text PDF

Background And Objective: Until now, there has been an unmet need for treatments promoting chronic-phase post-stroke functional recovery. We previously found that morroniside promoted endogenous neurogenesis in ischemic stroke, but its therapeutic window was limited to the first 48 h. Here, we aimed to explore whether deep brain stimulation (DBS) combined with morroniside could enhance neurogenesis in rats subjected to focal ischemic stroke and contributes to functional recovery.

View Article and Find Full Text PDF

Background: Treatment of hepatitis C virus (HCV) during pregnancy can cure maternal HCV and prevent perinatal HCV transmission. The primary objective was to compare the pharmacokinetics (PK) of sofosbuvir/velpatasvir (SOF/VEL) in pregnant versus nonpregnant people.

Methods: Pregnant people with chronic HCV infection were enrolled between 23-25 weeks' gestation and were provided SOF/VEL daily for 12 weeks.

View Article and Find Full Text PDF

Gilles de la Tourette Syndrome (GTS) is a chronic tic disorder, characterized by unwanted motor actions and vocalizations. While brain stimulation techniques show promise in reducing tic severity, optimal target networks are not well-defined. Here, we leverage datasets from two independent deep brain stimulation (DBS) cohorts and a cohort of tic-inducing lesions to infer critical networks for treatment and occurrence of tics by mapping stimulation sites and lesions to a functional connectome derived from 1,000 healthy participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!