Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees.

Plant Physiol Biochem

Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA. Electronic address:

Published: March 2020

Citrus greening, also called Huanglongbing (HLB), is one of the most destructive citrus diseases worldwide. It is caused by the fastidious gram-negative α-proteobacteria bacterium Candidatus Liberibacter asiaticus (CLas) and vectored by the Asian citrus psyllid (ACP), Diaphorina citri. Currently, there is no cure for HLB, no compounds have been successful in controlling HLB, and no sustainable management practices have been established for the disease. Thus, searching for alternative citrus greening disease mitigation strategies is considered an urgent priority for a sustainable citrus industry. The aim of this study was to use compounds extracted from oak, Quercus hemisphaerica, and to assess the antibacterial effects of these against CLas-infected citrus plants. The application of aqueous oak leaf extracts showed substantial inhibitory effects against CLas in citrus plants and the activity of genes related to starch. Significant differences were also observed in plant phenotypic and physiological traits after treatments. Citrus plants treated with oak extracts displayed an increase in stomatal conductance, chlorophyll content and nutrient uptake concurrently with a reduction of CLas titer, when compared to citrus plants treated with just water. The information provided from this study suggests a new management treatment program to effectively deal with the HLB disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.01.013DOI Listing

Publication Analysis

Top Keywords

citrus plants
16
citrus
10
leaf extracts
8
candidatus liberibacter
8
liberibacter asiaticus
8
citrus greening
8
plants treated
8
quercus leaf
4
extracts display
4
display curative
4

Similar Publications

The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.

View Article and Find Full Text PDF

Genomic selection is a widely used quantitative method of determining the genetic value of an individual from genomic information and phenotypic data. In this study, we used a large, multi-year training population of 3248 individuals from the University of Florida strawberry (Fragaria × ananassa Duchesne) breeding program. We coupled this training population with a test population of 1460 individuals derived from 20 biparental families.

View Article and Find Full Text PDF

Complex interplay: The interactions between citrus tristeza virus and its host.

Virology

January 2025

Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA; Department of Plant Pathology, University of Florida, Gainesville, FL, USA. Electronic address:

Citrus tristeza virus (CTV) is one of the largest and most economically important RNA viruses infecting plants. CTV's interactions with various citrus hosts can result in three diseases: quick decline, stem pitting, or seedling yellows. Studying CTV poses several challenges owing to its significant genetic diversity and the highly specific occurrence of disease symptoms when different genotypes infect different citrus hosts.

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!