Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2019.116623DOI Listing

Publication Analysis

Top Keywords

charcot-marie-tooth disease
4
disease mutation
4
mutation fbln5
4
fbln5 accompanying
4
accompanying small
4
small vasculitis
4
vasculitis widespread
4
widespread onion-bulb
4
onion-bulb formations
4
charcot-marie-tooth
1

Similar Publications

Background: Orthopaedic surgical intervention in children with Charcot-Marie-Tooth (CMT) often includes triceps surae lengthening (TSL) and foot procedures to address instability and pain due to equinus and cavovarus deformities. These surgeries may unmask underlying weakness in this progressive disease causing increased calcaneal pitch and excessive dorsiflexion in terminal stance leading to crouch. The purpose of this study was to evaluate changes in ankle function during gait following TSL surgery in children with CMT.

View Article and Find Full Text PDF

Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!