A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. | LitMetric

AI Article Synopsis

  • Alginates are gaining popularity because they are both biocompatible and biodegradable.
  • Researchers created alginate films with varying glycerol and calcium chloride concentrations to see how these factors affect their properties.
  • The study found that combining glycerol and calcium improves the mechanical strength and thermal resistance of the films, making them suitable for applications like wound dressing and food packaging.

Article Abstract

Alginates attract growing interest due to their biocompatible and biodegradable nature. Here, a wide spectrum of glycerol added alginate films (from 0 to 30% w/w, glycerol/alginate) were prepared and crosslinked by four different concentrations of calcium chloride solutions (0.5, 1, 1.5, 2%, w/w). This is the first investigation involving variation of both the plasticizer and crosslinker concentrations in twenty different compositions. It is shown that glycerol and calcium have a synergic effect on the mechanical properties and the behavior of crosslinked and plasticized alginate films cannot be predicted by studies, which vary only one of these, keeping the other constant. Without glycerol, crosslinking had a negligible effect on tensile behavior, but with glycerol addition, the effect of crosslinking became evident in mechanical properties. Calcium and glycerol concentrations exhibited a combined effect, displaying optimum combinations with good strength and fracture strain properties. Crosslinking increased the thermal resistance of all films. Low crosslinked high swelling films and highly crosslinked low swelling films were prepared. Water vapor permeability of films decreased regularly with increasing calcium concentration. The films exhibited high transmittance in the visible region. The results showed that alginate films have an appreciable potential in wound dressing and food packaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.103DOI Listing

Publication Analysis

Top Keywords

alginate films
16
films
9
mechanical properties
8
swelling films
8
glycerol
6
calcium
5
detailed investigation
4
investigation calcium
4
crosslinking
4
calcium crosslinking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!