From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes.

J Mol Biol

Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK. Electronic address:

Published: March 2020

Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2019.12.045DOI Listing

Publication Analysis

Top Keywords

islet-cell dysfunction
8
type diabetes
8
t2d disease
8
t2d
5
genetic association
4
association molecular
4
molecular mechanisms
4
mechanisms islet-cell
4
dysfunction type
4
diabetes genome-wide
4

Similar Publications

The forkhead box O1 (FOXO1), the first discovered member of the FoxO family, is a critical transcription factor predominantly found in insulin-secreting and insulin-sensitive tissues. In the pancreas of adults, FoxO1 expression is restricted to islet β cells. We determined that in human islet microarray datasets, FoxO1 expression is higher than other FoxO transcription factors.

View Article and Find Full Text PDF

Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.

View Article and Find Full Text PDF

Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different ( = 0.79, 0.

View Article and Find Full Text PDF

Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines.

View Article and Find Full Text PDF

Maternal Low-Protein Diet During Nursing Leads to Glucose-Insulin Dyshomeostasis and Pancreatic-Islet Dysfunction by Disrupting Glucocorticoid Responsiveness in Male Rats.

Biology (Basel)

December 2024

Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil.

Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!