Analysis of Active Site Architecture and Reaction Product Linkage Chemistry Reveals a Conserved Cleavage Substrate for an Endo-alpha-mannanase within Diverse Yeast Mannans.

J Mol Biol

Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada. Electronic address:

Published: February 2020

Yeast α-mannan (YM) is a densely branched N-linked glycan that decorates the surface of yeast cell walls. Owing to the high degree of branching, cleavage of the backbone of YM appears to rely on the coupled action of side-chain-cleaving enzymes. Upon examining the genome sequences of bovine-adapted Bacteroides thetaiotaomicron strains, isolated for their ability to degrade YM, we have identified a tandem pair of genes inserted into an orphan pathway predicted to be involved in YM metabolism. Here, we investigated the activity of one of these enzymes, a predicted endo-mannanase from glycoside hydrolase (GH) family 76 (BtGH76-MD40). Purified recombinant BtGH76-MD40 displayed activity on structurally distinct YMs from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Linkage analysis of released oligosaccharide products from S. cerevisiae and S. pombe mannan determined BtGH76-MD40 targets a specific linkage that is conserved in structurally diverse YM substrates. In addition, using two differential derivatization methods, we have shown that there is an absolute requirement for undecorated d-mannopyranose in the -1 subsite. Determination of the BtGH76-MD40 X-ray crystal structure and structural superimposition and molecular docking of a branched alpha-mannopentatose substrate supported these findings. In contrast, BtGH76-MD40 can accommodate extended side chains in the +1 and -2 subsites, highlighting that a single alpha-1,6-mannosyl residue is a prerequisite for activity, and cleavage occurs at the reducing end of the undecorated monosaccharide. Collectively these results demonstrate how acquisition of new enzymes within extant pathways contributes to the functional abilities of saccharolytic bacteria persisting in complex digestive ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2019.12.048DOI Listing

Publication Analysis

Top Keywords

analysis active
4
active site
4
site architecture
4
architecture reaction
4
reaction product
4
product linkage
4
linkage chemistry
4
chemistry reveals
4
reveals conserved
4
conserved cleavage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!