Optical photons undergo strong scattering when propagating beyond 1-mm deep inside biological tissue. Finding the origin of these diffused optical wavefronts is a challenging task. Breaking through the optical diffusion limit, photoacoustic (PA) imaging (PAI) provides high-resolution and label-free images of human vasculature with high contrast due to the optical absorption of hemoglobin. In real-time PAI, an ultrasound transducer array detects PA signals, and B-mode images are formed by delay-and-sum or frequency-domain beamforming. Fundamentally, the strength of a PA signal is proportional to the local optical fluence, which decreases with the increasing depth due to depth-dependent optical attenuation. This limits the visibility of deep-tissue vasculature or other light-absorbing PA targets. To address this practical challenge, an encoder-decoder convolutional neural network architecture was constructed with custom modules and trained to identify the origin of the PA wavefronts inside an optically scattering deep-tissue medium. A comprehensive ablation study provides strong evidence that each module improves the localization accuracy. The network was trained on model-based simulated PA signals produced by 16 240 blood-vessel targets subjected to both optical scattering and Gaussian noise. Test results on 4600 simulated and five experimental PA signals collected under various scattering conditions show that the network can localize the targets with a mean error less than 30 microns (standard deviation 20.9 microns) for targets below 40-mm imaging depth and 1.06 mm (standard deviation 2.68 mm) for targets at a depth between 40 and 60 mm. The proposed work has broad applications such as diffused optical wavefront shaping, circulating melanoma cell detection, and real-time vascular surgeries (e.g., deep-vein thrombosis).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769001 | PMC |
http://dx.doi.org/10.1109/TUFFC.2020.2964698 | DOI Listing |
Npj Imaging
November 2024
Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA.
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
View Article and Find Full Text PDFACS Photonics
October 2024
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands.
In measuring cerebral blood flow (CBF) noninvasively using optical techniques, diffusing-wave spectroscopy is often combined with near-infrared spectroscopy to obtain a reliable blood flow index. Measuring the blood flow index at a determined depth remains the ultimate goal. In this study, we present a simple approach using dual-comb lasers where we simultaneously measure the absorption coefficient (μ), the reduced scattering coefficient (μ ), and dynamic properties.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China; Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China. Electronic address:
Hydrogel-based tissue clearing technologies have shown significant promise for deep-tissue imaging and subcellular-level optical 3D reconstruction of whole organs. This study proposes a novel approach utilizing a deep eutectic solvent (DES) formulated with glucose and m-xylylene-diamine (MXDA) to create a highly efficient tissue-clearing hydrogel system named the passive hydrogel clearing system (PHCS). PHCS achieved efficient tissue clearing through a single-step tissue gelation process.
View Article and Find Full Text PDFAnal Chem
October 2024
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The current limitations of single-molecule localization microscopy (SMLM) in deep tissue imaging, primarily due to depth-dependent aberrations caused by refractive index (RI) mismatch, present a significant challenge in achieving high-resolution images at greater depths. To extend the imaging depth, we optimized the imaging buffer of SMLM with the RI matched to that of the objective immersion medium and systematically evaluated five different RI-matched buffers, focusing on their impact on the blinking behavior of red-absorbing dyes and the quality of reconstructed super-resolution images. Particularly, we found that clear unobstructed brain imaging cocktails-based imaging buffer could match the RI of oil and was able to clear the tissue samples.
View Article and Find Full Text PDFJ Biophotonics
October 2024
School of Computer, Qufu Normal University, Rizhao, China.
Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!