The direct transformation of lignin into fuels and chemicals remains a huge challenge because of the recalcitrant and complicated structure of lignin. In this study, rhenium oxide-modified iridium supported on SiO (Ir-ReO /SiO ) is employed for the one-pot conversion of various lignin model compounds and lignin feedstocks into naphthenes. Up to 100 % yield of cyclohexane from model compounds and 44.3 % yield of naphthenes from lignin feedstocks are achieved. 2 D HSQC NMR spectroscopy before and after the reaction confirms the activity of Ir-ReO /SiO in the cleavage of the C-O bonds and hydrodeoxygenation of the depolymerized products. H temperature-programmed reduction, temperature-programmed desorption of NH , IR spectroscopy of pyridine adsorption, X-ray photoelectron spectroscopy, X-ray absorption fine structure analysis, and control experiments reveal that a synergistic effect between Ir and ReO in Ir-ReO /SiO plays a crucial role in the high performance; ReO is mainly responsible for the cleavage of C-O bonds, whereas Ir is responsible for hydrodeoxygenation and saturation of the benzene rings. This methodology opens up an energy-efficient route for the direct conversion of lignin into valuable naphthenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201903286 | DOI Listing |
J Environ Manage
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:
Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Front Chem
December 2024
Biomolécules: Conception, Isolement et Synthèse (BioCIS), UMR CNRS 8076, Université Paris-Saclay, Orsay, France.
Platform chemicals obtained from biomass will play an important role in chemical industry. Already existing compounds or not yet established chemicals are produced from this renewable feedstock. Using photochemical reactions as sustainable method for the conversion of matter furthermore permits to develop processes that are interesting from the ecological and economical point of view.
View Article and Find Full Text PDFAMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France.
The design of a new visible-light methacrylated-based kraft lignin photosensitizer (MAcL) of iodonium salt (Iod) for the free-radical polymerization (FRP) of polyethylene glycol dimethacrylate (PEGDMA) under LEDs@405, 455, 470, 505, and 530 nm is reported. As demonstrated by laser flash photolysis (LFP) and electron paramagnetic resonance spin-trapping (EPR ST) experiments, the combination of MAcL with an electron acceptor (Iod) and trimethylolpropane tris(3-mercaptopropionate) (TT) used as a crosslinker, leads to the formation of highly efficient initiating radicals, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!