Human indoleamine 2,3-dioxygenase 1 (IDO1) has become an increasingly valuable target for cancer immunotherapy because it promotes immune escape by tumor cells. To date, the function of post-translational modifications (PTMs) on IDO1 has not been fully elucidated. Among the many forms of PTMs, it has been identified that three tyrosine sites (Y15, Y345, and Y353) on IDO1 are nitrated and play important roles in catalytic function. Herein, by genetically encoding 3-nitro-l-tyrosine into the tyrosine nitration sites of IDO1, the homogeneous and native nitrated IDO1 have been obtained. It is found that the nitration of different tyrosine sites has different effects on the IDO1 structure and enzyme activity. Nitration at position Y15 has a negligible effect, but nitration at Y345 or Y353 decreases the enzyme activity, especially Y353. Furthermore, these results demonstrate that the regulation of the catalytic function caused by tyrosine nitration is related to perturbation of the protein structure and heme-binding disruption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201900735 | DOI Listing |
Plant Physiol
January 2025
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
Omega (ω)-3 fatty acids (FAs) are essential components of cell membranes that also serve as precursors of numerous regulatory molecules. α-linolenic acid (ALA), one of the most important ω3 FAs in plants, is synthesized in both the plastid and extraplastidial compartments. FA Desaturase (FAD) 3 is an extraplastidial enzyme that converts linoleic acid (LA) to ALA.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .
View Article and Find Full Text PDFFEBS J
January 2025
Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!