Quantiles are widely used in both theoretical and applied statistics, and it is important to be able to deploy appropriate quantile estimators. To improve performance in the lower and upper quantiles, especially with small sample sizes, a new quantile estimator is introduced which is a weighted average of all order statistics. The new estimator, denoted NO, has desirable asymptotic properties. Moreover, it offers practical advantages over four estimators in terms of efficiency in most experimental settings. The Harrell-Davis quantile estimator, the default quantile estimator of the R programming language, the Sfakianakis-Verginis SV2 quantile estimator and a kernel quantile estimator. The NO quantile estimator is also utilized in comparing two independent groups with a percentile bootstrap method and, as expected, it is more successful than other estimators in controlling Type I error rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bmsp.12198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!