A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteomic Atomics Reveals a Distinctive Uracil-5-Methyltransferase. | LitMetric

Proteomic Atomics Reveals a Distinctive Uracil-5-Methyltransferase.

Mol Inform

Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 1, 33-791, Republic of Korea.

Published: May 2020

Carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S) atoms intrigue as they are the foundation for amino acid (AA) composition and the folding and functions of proteins and thus define and control the survival of a cell, the smallest unit of life. Here, we calculated the proteomic atom distribution in >1500 randomly selected species across the entire current phylogenetic tree and identified uracil-5-methyltransferase (U5MTase) of the protozoan parasite Plasmodium falciparum (Pf, strain Pf3D7), with a distinct atom and AA distribution pattern. We determined its apicoplast location and in silico 3D protein structure to refocus attention exclusively on U5MTase with tremendous potential for therapeutic intervention in malaria. Around 300 million clinical cases of malaria occur each year in tropical and subtropical regions of the world, resulting in over one million deaths annually, placing malaria among the most serious infectious diseases. Genomic and proteomic research of the clades of parasites containing Pf is progressing slowly and the functions of most of the ∼5300 genes are still unknown. We applied a 'bottom-up' comparative proteomic atomics analysis across the phylogenetic tree to visualize a protein molecule on its actual basis - i. e., its atomic level. We identified a protruding Pf3D7-specific U5MTase, determined its 3D protein structure, and identified potential inhibitory drug molecules through in silico drug screening that might serve as possible remedies for the treatment of malaria. Besides, this atomic-based proteome map provides a unique approach for the identification of parasite-specific proteins that could be considered as novel therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201900135DOI Listing

Publication Analysis

Top Keywords

proteomic atomics
8
atom distribution
8
phylogenetic tree
8
protein structure
8
proteomic
4
atomics reveals
4
reveals distinctive
4
distinctive uracil-5-methyltransferase
4
uracil-5-methyltransferase carbon
4
carbon hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!