Modelling monotonic effects of ordinal predictors in Bayesian regression models.

Br J Math Stat Psychol

Assistance publique - Hôpitaux de Paris, France.

Published: November 2020

Ordinal predictors are commonly used in regression models. They are often incorrectly treated as either nominal or metric, thus under- or overestimating the information contained. Such practices may lead to worse inference and predictions compared to methods which are specifically designed for this purpose. We propose a new method for modelling ordinal predictors that applies in situations in which it is reasonable to assume their effects to be monotonic. The parameterization of such monotonic effects is realized in terms of a scale parameter b representing the direction and size of the effect and a simplex parameter modelling the normalized differences between categories. This ensures that predictions increase or decrease monotonically, while changes between adjacent categories may vary across categories. This formulation generalizes to interaction terms as well as multilevel structures. Monotonic effects may be applied not only to ordinal predictors, but also to other discrete variables for which a monotonic relationship is plausible. In simulation studies we show that the model is well calibrated and, if there is monotonicity present, exhibits predictive performance similar to or even better than other approaches designed to handle ordinal predictors. Using Stan, we developed a Bayesian estimation method for monotonic effects which allows us to incorporate prior information and to check the assumption of monotonicity. We have implemented this method in the R package brms, so that fitting monotonic effects in a fully Bayesian framework is now straightforward.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bmsp.12195DOI Listing

Publication Analysis

Top Keywords

monotonic effects
20
ordinal predictors
20
regression models
8
effects
6
monotonic
6
ordinal
5
predictors
5
modelling monotonic
4
effects ordinal
4
predictors bayesian
4

Similar Publications

The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.

View Article and Find Full Text PDF

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.

View Article and Find Full Text PDF

Impact of Cell Layout on Bandwidth of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measurements Technology and Instrument, Tianjin University, Tianjin 300072, China.

Piezoelectric micromachined ultrasonic transducers (PMUTs) show considerable promise for application in ultrasound imaging, but the limited bandwidth of the traditional PMUTs largely affects the imaging quality. This paper focuses on how to arrange cells with different frequencies to maximize the bandwidth and proposes a multi-frequency PMUT (MF-PMUT) linear array. Seven cells with gradually changing frequencies are arranged in a monotonic trend to form a unit, and 32 units are distributed across four lines, forming one element.

View Article and Find Full Text PDF

Neonicotinoids exposure was found to induce thyroid dysfunction. However, there lack of direct evidence between neonicotinoids exposure and thyroid hormone (TH) disruption in population study, especially in children, which limits the understanding on their health hazard. To fill this knowledge gap, we conducted a cross-sectional study on children of a rural area in South China (n = 88), and analyzed urinary ten neonicotinoids (including metabolites), serum TH, thyroxine-binding globulin (TBG), and thyroid stimulating hormone (TSH) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!