CD5 is expressed on T cells and a subset of B cells (B1a). It can attenuate TCR signalling and impair CTL activation and is a therapeutic targetable tumour antigen expressed on leukemic T and B cells. However, the potential therapeutic effect of functionally blocking CD5 to increase T cell anti-tumour activity against tumours (including solid tumours) has not been explored. CD5 knockout mice show increased anti-tumour immunity: reducing CD5 on CTLs may be therapeutically beneficial to enhance the anti-tumour response. Here, we show that ex vivo administration of a function-blocking anti-CD5 MAb to primary mouse CTLs of both tumour-naïve mice and mice bearing murine 4T1 breast tumour homografts enhanced their capacity to respond to activation by treatment with anti-CD3/anti-CD28 MAbs or 4T1 tumour cell lysates. Furthermore, it enhanced TCR signalling (ERK activation) and increased markers of T cell activation, including proliferation, CD69 levels, IFN-γ production, apoptosis and Fas receptor and Fas ligand levels. Finally, CD5 function-blocking MAb treatment enhanced the capacity of CD8 T cells to kill 4T1-mouse tumour cells in an ex vivo assay. These data support the potential of blockade of CD5 function to enhance T cell-mediated anti-tumour immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.201948309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!