Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu.

Sci Rep

Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Bandeirantes Avenue, 3900, 8th floor, University Campus, Ribeirão Preto, SP, Zip code: 14049-900, Brazil.

Published: January 2020

Eutopic endometrium appears to be crucial for endometriosis development. Despite of the evident importance, data regarding the cellular microenvironment remain unclear. Our objective was to explore the tissue microenvironment heterogeneity, transcripts, and pathways that are enriched in all phases of the menstrual cycle by analysing publicly deposited data derived from whole transcriptome microarrays of eutopic endometria of women with and without endometriosis. A meta-analysis of the transcriptome microarrays was performed using raw data available from a public database. Eligibility criteria included eutopic endometrium samples from women with endometriosis and healthy controls without any pathological condition reported the presence of an adequately reported normal menstrual phase, and samples containing both glandular and stromal components. Raw data were processed using a robust multiarray average method to provide background correction, normalisation, and summarisation. The batch effect was estimated by principal variant component analysis and removed using an empirical Bayes method. Cellular tissue heterogeneity was inferred using the xCell package. Differentially expressed genes were identified based on a 5% adjusted p value and a 2.0-fold change. Pathways were identified by functional enrichment based on the Molecular Signatures Database, a p value of < 5%, and an FDR q value of ≤ 25%. Genes that were more frequently found in pathways were identified using leading edge analysis. In a manner independent of cycle phase, the subpopulations of activated dendritic cells, CD4 T effector memory phenotype cells, eosinophils, macrophages M1, and natural killer T cells (NKT) were all higher in stage I-II endometriosis compared to those in healthy controls. The subpopulations of M2 macrophages and natural killer T cells were elevated in eutopic endometriums from women with stage III-IV endometriosis, and smooth muscle cells were always more prevalent in healthy eutopic endometriums. Among the differently expressed genes, FOS, FOSB, JUNB, and EGR1 were the most frequently mapped within the interaction networks, and this was independent of stage and cycle phase. The enriched pathways were directly related to immune surveillance, stem cell self-renewal, and epithelial mesenchymal transition. PI3K AKT mTOR, TGF signalling, and interferon alpha/gamma responses were enriched exclusively in stage III-IV endometriosis. The cellular microenvironments and immune cell profiles were different between eutopic endometriums from women with stage I-II and stage III-IV endometriosis, and these differences were independent of the hormonal milieu. Specifically, a pro-inflammatory profile was predominant in stage I-II endometriosis, and M1-M2 polarization into eutopic endometrium may be crucial for the progression of the disease. The higher prevalence of NKT cells in eutopic endometriums from women with endometriosis that was independent of cycle phase or staging suggested a sustained stress and/or damage to these eutopic endometriums. Based on this, the results of this meta-analysis are important for identifying challenges and opportunities for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962450PMC
http://dx.doi.org/10.1038/s41598-019-57207-yDOI Listing

Publication Analysis

Top Keywords

eutopic endometrium
12
transcriptome microarrays
8
women endometriosis
8
raw data
8
transcriptome meta-analysis
4
meta-analysis reveals
4
reveals differences
4
differences immune
4
immune profile
4
eutopic
4

Similar Publications

Single-cell and spatial transcriptomic profiling revealed niche interactions sustaining growth of endometriotic lesions.

Cell Genom

January 2025

National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China. Electronic address:

Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis.

View Article and Find Full Text PDF

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

Endometriosis (EMS) is a chronic inflammatory disease frequently associated with infertility. N6-methyladenosine (m6A) methylation, the most common form of methylation in eukaryotic mRNAs, has gained attention in the study of female reproductive diseases, including EMS and infertility. This study aimed to investigate the role of m6A regulators in EMS-related infertility.

View Article and Find Full Text PDF

Downregulated METTL3 Accumulates TERT Expression that Promote the Progression of Ovarian Endometriosis.

Front Biosci (Landmark Ed)

December 2024

Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.

Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.

View Article and Find Full Text PDF

NAT10 drives endometriosis progression through acetylation and stabilization of TGFB1 mRNA.

Mol Cell Endocrinol

February 2025

International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Speciality, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China. Electronic address:

Endometriosis, a gynecological disorder marked by pelvic pain and infertility, has its pathogenesis and pathophysiology significantly influenced by epigenetics, as these factors have been well characterized. However, the role of RNA-mediated epigenetic regulation in endometriosis remains to be elucidated. In our study, we found that N4-acetylcytidine (acC) RNA modification and N-acetyltransferase 10 (NAT10) were significantly upregulated in endometrial lesions compared to eutopic endometrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!