In the petroleum industry during a catalytic cracking process, the used zeolitic catalyst becomes waste. This article investigated the sorption capacities of ammonium ions from aqueous solutions onto the previously mentioned zeolitic waste by batch experiments. Three types of zeolitic waste were used: unmodified zeolitic waste with two different particle size distributions and HO-modified zeolitic waste. Several techniques, including X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) multilayer adsorption theory measurements, and X-ray fluorescence analysis (XRF) were used to demonstrate experimentally that the zeolitic waste could be used as a sorbent for the water decontamination of NH ions. The morphology of zeolitic waste investigated by scanning electron microscopy (SEM) revealed particles with a spherical shape. The nitrogen adsorption-desorption isotherms showed an isotherm mixture of types I (pure microporous) and IV (mesoporous). This suggested that the investigated zeolitic materials were mesoporous (4.84 nm) and microporous (0.852 nm), as well as containing slit/cylindric pores, according to a quench solid density functional theory (QSDFT) adsorption branch model. Zeolitic waste from the oil industry showed good NH sorption properties (removal efficiency of 72%), thus becoming a potential adsorbent to be used in the treatment of contaminated aqueous effluents polluted with ammonium ions. Simultaneous waste and water decontamination can be achieved, providing a new tool and enhanced capabilities for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962218 | PMC |
http://dx.doi.org/10.1038/s41598-019-55906-0 | DOI Listing |
Ind Eng Chem Res
December 2024
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
Polystyrene (PS) presents a significant environmental challenge due to its durability and resistance to degradation. A major issue in addressing this challenge is optimizing the pyrolysis process to selectively convert PS into valuable products, such as styrene, while minimizing unwanted byproducts. Existing studies on PS pyrolysis have primarily focused on general reaction yields and kinetics, with limited molecular-level insight into how zeolites can enhance product selectivity.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya.
The mitigation of high levels of phosphate (PO) and nitrate (NO) ions in water bodies, particularly in agricultural wastewater, holds paramount importance in curbing eutrophication within aquatic ecosystems. Herein, using experimental and computational techniques, the study explored the potential of naturally occurring South Africa heulandite (HEU) zeolite for the removal of PO and NO ions from synthetic wastewater in batch mode. The percentage removal of PO and NO was 59.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China. Electronic address:
In this study, a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption (AOAOCA) was used to treat the real waste transfer station (WTS) wastewater. The effects of hydraulic retention time (HRT), sludge reflux ratio (SRR), mixed liquid reflux ratio (MLRR), coagulant and zeolite on the contaminants removal efficiency were investigated. When the AOAOCA system was operated at the optimal conditions (HRT of 8 d, SRR of 70%, MLRR of 200%, PAFC as coagulant with dosage of 750 ppm and 1-3 mm zeolite with filling rate of 60%), the effluent COD, NH-N and TP could reach 82.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, People's Republic of China.
Fluoride contamination is a serious environmental problem in lepidolite hydrometallurgy wastewater. The treatment of fluoride-bearing wastewater is challenging because of the presence of coexisting ions including lithium (Li), rubidium (Rb), silicate (SiO), sulfate radical (SO). However, aluminum-modified zeolite (Al@zeolite) with sufficient hydroxyl groups and high adaptability has unique advantages for eliminating fluoride from lepidolite hydrometallurgy wastewater.
View Article and Find Full Text PDFLangmuir
December 2024
School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P.R. China.
Zeolites are used in the field of toluene nitrification reactions, but their intrinsic mechanism is not well explained. In this work, three typical zeolites including HZSM-5, HY, and Hβ are selected as catalysts and used for the nitration of toluene and typical monosubstituted benzenes with NO, and it explores the intrinsic influences on the nitrification of toluene on various zeolites through experimental and theoretical methods. The acidic properties and pore structures of three different zeolites were investigated through appropriate characterization techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!