Currently, sustainable utilisation, including recycling and valorisation, is becoming increasingly relevant in environmental management. The wastes bioconversion by the black soldier fly larva (BSFL) has two potential advantages: the larvae can convert the carbon and nitrogen in the biomass waste, and improve the properties of the substrate to reduce the loss of gaseous carbon and nitrogen. In the present study, the conversion rate of carbon, nitrogen and the emissions of greenhouse gases and NH during BSFL bio-treatment of food waste were investigated under different pH conditions. The results showed that the pH of the raw materials is a pivotal parameter affecting the process. The average wet weight of harvested BSFL was 13.26-95.28 mg/larva, with about 1.95-13.41% and 5.40-18.93% of recycled carbon and nitrogen from substrate at a pH from 3.0 to 11.0, respectively. Furthermore, pH is adversely correlated with CO emissions, but positively with NH emissions. Cumulative CO, NH, CH and NO emissions at pH ranging from 3.0 to 11.0 were 88.15-161.11 g kg, 0.15-1.68 g kg, 0.19-2.62 mg kg and 0.02-1.65 mg kg, respectively. Compared with the values in open composting, BSFL bio-treatment of food waste could lead greenhouse gas (especially CH and NO) and NH emissions to decrease. Therefore, a higher pH value of the substrate can increase the larval output and help the mitigation of greenhouse gas emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110066 | DOI Listing |
Plants (Basel)
January 2025
Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
Exploring the changes in plant functional traits and their relationship with the environment in karst climax communities across different latitudes can enhance our understanding of how these communities respond to environmental gradients. In this study, we focus on climax karst climax plant communities in Guizhou Province, China. We selected three sample sites located at varying latitudes and analyzed the variations in functional traits of the plant communities at these latitudes.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.
View Article and Find Full Text PDFMolecules
January 2025
Blood and Shock Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA.
Conjugation of short-chain fatty acids (SDFAs) to amines containing ring structures allows for better measurement by liquid chromatography tandem mass spectroscopy (LC-MS/MS). However, collision-induced dissociation (CID) results in breaking the conjugate back to the original SCFA and amine. We therefore set out to find an amine that would remain on the SCFA after CID and create a unique daughter for selectivity of measurement.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!