Background: In orthopedics, the treatment of implant-associated infections represents a high challenge. Especially, potent antibacterial effects at implant surfaces can only be achieved by the use of high doses of antibiotics, and still often fail. Drug-loaded magnetic nanoparticles are very promising for local selective therapy, enabling lower systemic antibiotic doses and reducing adverse side effects. The idea of the following study was the local accumulation of such nanoparticles by an externally applied magnetic field combined with a magnetizable implant. The examination of the biodistribution of the nanoparticles, their effective accumulation at the implant and possible adverse side effects were the focus. In a BALB/c mouse model (n = 50) ferritic steel 1.4521 and Ti90Al6V4 (control) implants were inserted subcutaneously at the hindlimbs. Afterwards, magnetic nanoporous silica nanoparticles (MNPSNPs), modified with rhodamine B isothiocyanate and polyethylene glycol-silane (PEG), were administered intravenously. Directly/1/7/21/42 day(s) after subsequent application of a magnetic field gradient produced by an electromagnet, the nanoparticle biodistribution was evaluated by smear samples, histology and multiphoton microscopy of organs. Additionally, a pathohistological examination was performed. Accumulation on and around implants was evaluated by droplet samples and histology.
Results: Clinical and histological examinations showed no MNPSNP-associated changes in mice at all investigated time points. Although PEGylated, MNPSNPs were mainly trapped in lung, liver, and spleen. Over time, they showed two distributional patterns: early significant drops in blood, lung, and kidney and slow decreases in liver and spleen. The accumulation of MNPSNPs on the magnetizable implant and in its area was very low with no significant differences towards the control.
Conclusion: Despite massive nanoparticle capture by the mononuclear phagocyte system, no significant pathomorphological alterations were found in affected organs. This shows good biocompatibility of MNPSNPs after intravenous administration. The organ uptake led to insufficient availability of MNPSNPs in the implant region. For that reason, among others, the nanoparticles did not achieve targeted accumulation in the desired way, manifesting future research need. However, with different conditions and dimensions in humans and further modifications of the nanoparticles, this principle should enable reaching magnetizable implant surfaces at any time in any body region for a therapeutic reason.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964035 | PMC |
http://dx.doi.org/10.1186/s12951-020-0578-8 | DOI Listing |
Cardiovasc Eng Technol
October 2023
Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, USA.
Purpose: Worldwide, cardiovascular disease is the leading cause of hospitalization and death. Recently, the use of magnetizable nanoparticles for medical drug delivery has received much attention for potential treatment of both cancer and cardiovascular disease. However, proper understanding of the interacting magnetic field forces and the hydrodynamics of blood flow is needed for effective implementation.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2020
Clinic for Orthopedic Surgery, NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.
Background: In orthopedics, the treatment of implant-associated infections represents a high challenge. Especially, potent antibacterial effects at implant surfaces can only be achieved by the use of high doses of antibiotics, and still often fail. Drug-loaded magnetic nanoparticles are very promising for local selective therapy, enabling lower systemic antibiotic doses and reducing adverse side effects.
View Article and Find Full Text PDFRadiologe
October 2019
Erwin L. Hahn Institute for MR Imaging, Universität Duisburg-Essen, Kokereiallee 7, 45141, Essen, Deutschland.
Background: It can be expected that the number of 7 T MRI systems for clinical use will increase in the future. On the other hand, almost no medical implant has been labeled MR conditional for 7 T, so far, leaving the question of implant safety unanswered to the MR operator.
Methods: In principle, the same interactions between magnetizable and electric conductive material apply at 7 T as known at lower magnetic field strengths.
J Nanobiotechnology
November 2018
NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Clinic for Orthopedic Surgery, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.
Background: In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects.
View Article and Find Full Text PDFTissue Eng Part A
July 2018
1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
Incomplete endothelialization of intracoronary stents has been associated with stent thrombosis and recurrent symptoms, whereas prolonged use of dual antiplatelet therapy increases bleeding-related adverse events. Facilitated endothelialization has the potential to improve clinical outcomes in patients who are unable to tolerate dual antiplatelet therapy. The objective of this study was to demonstrate the feasibility of magnetic cell capture to rapidly endothelialize intracoronary stents in a large animal model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!