Examples are presented that application of amorphous Al O nucleation layer is an efficient way of controlling spatial distribution of GaN nanowires grown by plasma-assisted molecular beam epitaxy. On GaN/sapphire substrates Al O stripes induce formation of GaN nanowires while a compact GaN layer is formed outside the stripes. We show that the ratio of nanowire length h to the thickness of the compact layer d can be tailored by adjusting impinging gallium and nitrogen fluxes. Calculations of the h/d aspect ratio were performed taking into account dependence of nanowire incubation time on the growth parameters. In agreement with calculations we found that the value of h/d ratio can be increased by increasing the N/Ga flux ratio in the way that the N-limited growth regime determines nanowire axial growth rate while growth of compact layer remains Ga-limited. This ensures the highest value of the h/d aspect ratio. Local modification of GaN growth kinetics caused by surface diffusion of Ga adatoms through the boundary separating the Al O stripe and the GaN/sapphire substrate is discussed. We show that during the nanowire incubation period gallium is transported out of the Al O stripe, which delays nanowire nucleation onset and leads to reduced length of GaN nanowires in the vicinity of the stripe edge. Simultaneously the growth on the GaN/sapphire substrate is locally enhanced, so the planar GaN layers adopts a typical edge shape of mesa structures grown by selective area growth. Ga diffusion length on a-Al O surface of ∼500 nm is inferred from our results.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab6bf2DOI Listing

Publication Analysis

Top Keywords

gan nanowires
16
selective area
8
gan
8
formation gan
8
amorphous nucleation
8
nucleation layer
8
compact layer
8
calculations h/d
8
h/d aspect
8
aspect ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!