We propose an electromagnetic-based braille display that can represent two-dimensional information. The key principle is a flip-latch structure, which allows satisfying requirements of both protrusion force for braille recognition and low power consumption. A magnet-inserted flip-latch has an eccentric shape, and is driven by and flips over the protruded voice coil and pushing the braille pin. Then it acts as a latch to lock and maintain the pin protrusion without additional energy consumption. We manufacture braille display modules and arrange them into a braille display with a total of 192 pins (16 columns and 12 rows). The pin-to-pin spacing is 2.5 mm, and the thickness of the display is about 5.5 mm. Each pin can switch states in 5 ms of operating time with 1W of power. In this paper, we describe the design and operating mechanism of the proposed actuator and perform operation tests to obtain stable driving conditions for the display. Finally, applications and limitations of the proposed braille display are analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TOH.2019.2963858DOI Listing

Publication Analysis

Top Keywords

braille display
20
braille
7
display
6
display portable
4
portable device
4
device flip-latch
4
flip-latch structured
4
structured electromagnetic
4
electromagnetic actuator
4
actuator propose
4

Similar Publications

Miniature actuators are utilized in various application fields, from robotics to medical devices, where compact dimensions, precise movements, and cost-effectiveness are crucial factors. Particularly for applications like braille displays, there is a critical demand for lightweight, portable, and affordable actuators to integrate into daily life for visually impaired people. However, existing actuation technologies such as electroactive polymers, electrorheological materials, and piezoelectric elements often do not meet the specific requirements of miniature actuators, especially for braille displays.

View Article and Find Full Text PDF

Deformable Joule heating electrode based on hybrid layers of silver nanowires and carbon nanotubes and its application in a refreshable multi-cell Braille display.

Adv Funct Mater

August 2024

Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.

Stretchable electrodes are an essential component in soft actuator systems. In particular, Joule heating electrodes (JHEs) are required for thermal actuation systems. A highly stretchable, patternable, and low-voltage operating JHE based on hybrid layers of silver nanowires (AgNWs) and carbon nanotubes (CNTs) is reported.

View Article and Find Full Text PDF

An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. For patients who are blind or visually challenged, Braille patterns were displayed on the tablet surface in addition to the optimization of printing hydrogel inks.

View Article and Find Full Text PDF

3D printing has been introduced as a novel approach for the design of personalized dosage forms and support patient groups with special needs that require additional assistance for enhanced medication adherence. In this study liquid crystal display (LCD) is introduced for the development of sustained release bupropionHCl printed tablets. The optimization of printing hydrogel inks was combined with the display of Braille patterns on the tablet surface for blind or visually impaired patients.

View Article and Find Full Text PDF

Existing market-available refreshable Braille displays (RBDs) offer limited functionality at a high cost, hindering accessibility for individuals with blindness and visual impairment for teaching and learning purposes. This motivates us to develop a multi-functional, compact, and affordable RBD tailored for educational institutes to enhance teaching and learning experiences. We propose the development of BLISS (Braille Letters and Interactive Shape Screen), a novel RBD, that BLISS presents a unique configuration arrangement of Braille cells that accommodates up to six letters at a time and shapes by reusing the Braille pins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!