Bladder cancer (BC) is the ninth most common malignant disease and ranks fourteenth in cancer mortality worldwide. Moreover, among cancers, the incidence and mortality of BC in males increased to the 6th and 9th place, respectively. The overall survival (OS) declines dramatically as the cancer progresses, especially when urothelial cells transition from noninvasive to invasive. It is well known that epithelial cells can acquire invasive properties and a propensity to metastasize through the epithelial-to-mesenchymal transition (EMT) process in tumourigenesis and progression. However, the potential molecular mechanisms and key pathways are still unclear. As the sequencing technology advances, long non-coding RNAs (lncRNAs) have been proven to play an important role in regulating biological processes and cellular pathways. Here, we reviewed important lncRNAs, such as H19, UCA1 and MALAT1, that participate in the malignant phenotype of BC and regulate EMT signalling networks in the invasion-metastasis cascade during BC development. We further discuss MALAT1, PCAT-1 and SPRY4-IT1, and also urine and blood exosomal H19 and PTENP as potential noninvasive biomarkers. Moreover, antisense oligonucleotides (ASOs) and a double-stranded DNA plasmid (BC-819) have been designed for use in preclinical cancer models and clinical trials in patients. Therefore, the results of investigations have gradually prompted the utility of lncRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2020.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!