A Validamycin Shunt Pathway for Valienamine Synthesis in Engineered 5008.

ACS Synth Biol

State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University, Shanghai 200240 , China.

Published: February 2020

Valienamine is the key functional component of many natural glycosidase inhibitors, including the crop protectant validamycin A and the clinical antidiabetic agent acarbose. Due to its important biomedical activity, it is also the prominent lead compound for the exploration of therapeutic agents, such as the stronger α-glucosidase inhibitor voglibose. Currently, the main route for obtaining valienamine is a multistep biosynthetic process involving the synthesis and degradation of validamycin A. Here, we established an alternative, vastly simplified shunt pathway for the direct synthesis of valienamine based on an envisioned non-natural transamination in the validamycin A producer 5008. We first identified candidate aminotransferases for the non-natural ketone substrate valienone and conducted molecular evolution . The WecE enzyme from was verified to complete the envisioned step with >99.9% enantiomeric excess and was further engineered to produce a 32.6-fold more active mutant, VarB, through protein evolution. Subsequently, two copies of VarB were introduced into the host, and the new shunt pathway produced 0.52 mg/L valienamine after a 96-h fermentation. Our study thus illustrates a dramatically simplified alternative shunt pathway for valienamine production and introduces a promising foundational platform for increasing the production of valienamine and its valuable N-modified derivatives for use in pharmaceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.9b00319DOI Listing

Publication Analysis

Top Keywords

shunt pathway
16
pathway valienamine
8
valienamine
7
validamycin
4
validamycin shunt
4
pathway
4
valienamine synthesis
4
synthesis engineered
4
engineered 5008
4
5008 valienamine
4

Similar Publications

Shunt dependence syndrome is a serious long-term complication characterized by symptoms and signs of increased intracranial pressure with normal-sized lateral ventricles after several years of arachnoid cyst-peritoneal shunting. It is easy to misdiagnose and overlook when combined with sinus stenosis, thus delaying treatment. Here, we present a 35-year-old man with an unexplained headache and binocular horizontal diplopia with high intracranial pressure.

View Article and Find Full Text PDF

Gastric varices (GVs) are dilated veins in the stomach submucosa, typically caused by portal hypertension. A prompt diagnosis is needed, given the significant risk of bleeding and mortality. Endoscopic cyanoacrylate injections are widely adopted for treating GV due to their efficacy in preventing rebleeding with lower complication rates.

View Article and Find Full Text PDF

Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease.

View Article and Find Full Text PDF

Hereditary hemorrhagic telangiectasia is an autosomal dominant disorder caused by mutations in the bone morphogenetic protein signaling pathway, leading to arteriovenous malformations. While previously thought to share molecular and cellular dysregulation, this study reveals highly distinct mechanisms depending on whether mutations occur in Alk1 or SMAD4. Loss of SMAD4 enhances endothelial cell responses to flow, including flow-regulated transcription and cell migration against blood flow, causing excessive pruning of capillaries and the formation of single large shunts.

View Article and Find Full Text PDF

Development of a highly efficient microbial fermentation process of recombinant Escherichia coli for GABA production from glucose.

J Biotechnol

January 2025

Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

This study was aimed to develop a highly productive microbial fermentation process for gamma-aminobutyric acid (GABA) production from glucose. For this, an efficient GABA-producing E. coli strain was firstly developed through metabolic engineering with a strategy of increasing the flux of GABA biosynthetic pathway and deleting or repressing the GABA shunt pathways that compete with GABA biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!