The paper presents a mapping tool aiming to identify and minimise potential conflicts between onshore wind energy development and wildlife conservation in Lithuania. It merges current information on the distribution, conservation status and sensitivity of birds and bats to wind power with an integrated evaluation of wind resources (modelled wind speed), special planning status and technical perspectives of wind energy development. The paper includes assessment of the selected wildlife species which were described as sensitive to wind power (69 breeding and 43 migratory bird species and 17 bat species bats in the country). Used species level information allowed the precise identification of sensitive territories and might be used to mitigate negative wind farm effects using special measures based on species behavior. Finally, we delivered overlaps as possible conflicts among the most promising wind farm areas and the areas with high sensitivity in relation to bird and bat distribution. These overlaps point to the required attention and relevant decisions that are needed to ensure sustainable development of wind energy throughout the country. We suggest this tool for initial determination of appropriate areas for wind energy development in the country and as supplement to Environmental Impact Assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961939 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227735 | PLOS |
J Environ Manage
December 2024
Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.
Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
The rapid global adoption of electric vehicles (EVs) necessitates the development of advanced EV charging infrastructure to meet rising energy demands. In particular, community parking lots (CPLs) offer significant opportunities for coordinating EVs' charging. By integrating energy storage systems (ESSs), renewable energy sources (RESs), and building prosumers, substantial reductions in peak load and electricity costs can be achieved, while simultaneously promoting environmental sustainability.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Research on Microgrids (UPC CROM), Department of Electronic Engineering, Technical University of Catalonia, 08019, Barcelona, Spain.
With rising demand for electricity, integrating renewable energy sources into power networks has become a key challenge. The fast incorporation of clean energy sources, particularly solar and wind power, into the existing power grid in the last several years has raised a major problem in controlling and managing the power grid due to the intermittent nature of these sources. Therefore, in order to ensure the safe RES integration providing high-quality power at a fair price and for the secure and reliable functioning of electrical systems, a precise one-day-ahead solar irradiation and wind speed forecast is essential for a stable and safe hybrid energy system.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering of biosystem, Shahrekord University, Shahrekord, Iran.
The drying process in agriculture is energy-intensive and traditionally relies on fossil fuels, which are becoming less reliable and more expensive. This study designed and simulated a hybrid solar hot plate dryer system using the computer to reduce reliance on fossil fuels. The system's main components are a flat plate collector, photovoltaic panels, and a wind turbine.
View Article and Find Full Text PDFSci Rep
December 2024
Chitkara Centre for Research and Development, Chitkara University, Baddi, 174103, Himachal Pradesh, India.
This paper addresses the smart management and control of an independent hybrid system based on renewable energies. The suggested system comprises a photovoltaic system (PVS), a wind energy conversion system (WECS), a battery storage system (BSS), and electronic power devices that are controlled to enhance the efficiency of the generated energy. Regarding the load side, the system comprises AC loads, DC loads, and a water pump.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!