Quantum isomer search.

PLoS One

Information Sciences (CCS-3), Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

Published: April 2020

Isomer search or molecule enumeration refers to the problem of finding all the isomers for a given molecule. Many classical search methods have been developed in order to tackle this problem. However, the availability of quantum computing architectures has given us the opportunity to address this problem with new (quantum) techniques. This paper describes a quantum isomer search procedure for determining all the structural isomers of alkanes. We first formulate the structural isomer search problem as a quadratic unconstrained binary optimization (QUBO) problem. The QUBO formulation is for general use on either annealing or gate-based quantum computers. We use the D-Wave quantum annealer to enumerate all structural isomers of all alkanes with fewer carbon atoms (n < 10) than Decane (C10H22). The number of isomer solutions increases with the number of carbon atoms. We find that the sampling time needed to identify all solutions scales linearly with the number of carbon atoms in the alkane. We probe the problem further by employing reverse annealing as well as a perturbed QUBO Hamiltonian and find that the combination of these two methods significantly reduces the number of samples required to find all isomers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961863PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226787PLOS

Publication Analysis

Top Keywords

isomer search
16
carbon atoms
12
quantum isomer
8
structural isomers
8
isomers alkanes
8
number carbon
8
quantum
6
problem
6
search
5
isomer
4

Similar Publications

Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

FAST MS: Software for the Automated Analysis of Top-Down Mass Spectra of Polymeric Molecules Including RNA, DNA, and Proteins.

J Am Soc Mass Spectrom

December 2024

Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.

Top-down mass spectrometry (MS) enables comprehensive characterization of modified proteins and nucleic acids and, when native electrospray ionization (ESI) is used, binding site mapping of their complexes with native or therapeutic ligands. However, the high complexity of top-down MS spectra poses a serious challenge to both manual and automated data interpretation, even when the protein, RNA, or DNA sequence and the type of modification or the ligand are known. Here, we introduce FAST MS, a user-friendly software that identifies, assigns and relatively quantifies signals of molecular and fragment ions in MS and MS/MS spectra of biopolymers with known sequence and provides a toolbox for statistical analysis.

View Article and Find Full Text PDF

Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.

View Article and Find Full Text PDF
Article Synopsis
  • Today's precise timekeeping relies on optical atomic clocks, but nuclear clocks, using nuclear transitions, could offer enhanced accuracy for various scientific applications.
  • The elusive "Thorium Isomer" (Th) is a potential candidate for a nuclear clock, which has been under investigation for decades but only recently confirmed through direct detection in 2016.
  • Significant advances in characterizing Th's properties have been made, including determining its half-life and excitation energy, culminating in the first observation of its radiative decay, paving the way for further developments in precise timekeeping.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!