Enzymatic Synthesis of 2-(β-Galactosyl)-ethyl Methacrylate by β-Galactosidase from and Application for Glycopolymer Synthesis and Lectin Studies.

Biomacromolecules

Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University, Pauwelsstraße. 20 , 52074 Aachen , Germany.

Published: February 2020

Glycosidases have long been used for the synthesis of glycosides by transglycosylation reactions. Especially glycosidases from hyperthermophilic bacteria are useful for reactions under extreme reaction conditions, e.g., in the presence of organic solvents. We herein report the facile enzymatic synthesis and purification of 2-(β-galactosyl)-ethyl methacrylate (Gal-EMA) with the recombinant hyperthermostable glycosidase from in high yields. Optimized reaction conditions resulted in gram-scale synthesis of the galactosylated monomer with 88% transglycosylation yield. The product Gal-EMA was characterized by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. Gal-EMA was utilized to synthesize sugar-functionalized acrylate polymers with defined amounts of incorporated galactose (0-100%). Analysis of the binding affinity of the lectin RCA from to the glycopolymers using an enzyme-linked lectin assay (ELLA) revealed values between 0.24 and 6.2 nM, depending on the amount of incorporated Gal-EMA. The potential of Gal-EMA for the synthesis of acrylate-functionalized glycan oligomers was demonstrated by sequential elongation of the terminal galactose by two glycosyltransferases, resulting in the terminal glycan -acetyllactosamine (LacNAc) epitope. In conclusion, the enzymatic synthesis of Gal-EMA opens new routes to a series of novel monomeric building blocks for the synthesis of glycan-functionalized polyacrylates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b01647DOI Listing

Publication Analysis

Top Keywords

enzymatic synthesis
12
2-β-galactosyl-ethyl methacrylate
8
reaction conditions
8
synthesis
7
gal-ema
6
synthesis 2-β-galactosyl-ethyl
4
methacrylate β-galactosidase
4
β-galactosidase application
4
application glycopolymer
4
glycopolymer synthesis
4

Similar Publications

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!