The synthetic flexibility of metal-organic frameworks (MOFs) with high loading capacities and biocompatibility makes them ideal candidates as drug delivery systems (DDSs). Here, we report the use of CAU-7, a biocompatible bismuth-based MOF, for the delivery of two cancer drugs, sodium dichloroacetate (DCA) and α-cyano-4-hydroxycinnamic acid (α-CHC). We achieved loadings of 33 and 9 wt % for DCA and α-CHC, respectively. Interestingly, CAU-7 showed a gradual release of the drugs, achieving a release time of up to 17 days for DCA and 31 days for α-CHC. We then performed mechanical and thermal amorphization processes to attempt to delay the delivery of guest molecules even more. With the thermal treatment, we were able to achieve an outstanding 32% slower release of α-CHC from the thermally treated CAU-7. Using in vitro studies and endocytosis inhibitors, confocal microscopy, and fluorescence-activated cell sorting, we also demonstrated that CAU-7 was successfully internalized by cancer cells, partially avoiding lysosome degradation. Finally, we showed that CAU-7 loaded either with DCA or α-CHC had a higher therapeutic efficiency compared with the free drug approach, making CAU-7 a great option for biomedical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21692 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:
E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!